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Abstract

This paper proposes a new profile-based anomaly de-
tection and characterization procedure in order to
promptly detect both short-lived and long-lasting low-
intensive anomalies without any prior knowledge about
the target traffic. The key feature of the algorithm is the
joint use of a random projection technique (sketches)
and multiresolution non Gaussian marginal distribution
modeling. The former reduces the dimensionality of
the data and is used to obtain the reference (i.e., nor-
mal) behavior among the sketches. The latter extracts
anomalies in multiple time-scales. This detection proce-
dure is used to blindly analyze a large-scale packet trace
database collected on a trans-Pacific transit link from
2001 to 2006. Our tools can detect and identify a large
number of known and unknown anomalies and attacks,
whose intensities are very low (down to below one per-
cent). The sketch procedure also allows real-time iden-
tification of the IP source or destination addresses in
the detected anomaly, hence their mitigation.
Key Words: Anomaly detection, Traffic measurement,
Sketch, Gamma multiresolution modeling

1 Introduction

A hot topic for Internet security lies in detecting attacks
promptly and accurately and in defining mitigation poli-
cies. Often, anomaly detection and characterization is
an involved task for several reasons. One needs to detect
attacks when they are still at very low intensities, hid-
den amongst large volumes of regular traffic. Anoma-
lies to be detected show an extreme diversity in nature
(DDoS, flooding, flash crowds, worm outbreaks), in du-
ration (from very bursty or short lived ones to long last-
ing ones), in targets and goals. Moreover, new varieties
of anomalies are constantly appearing every day. There-
fore, designing filters (based on a characteristic time
scale for instance) that match a given known anomaly
quickly turns obsolete. Last but not least, regular traf-
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fic in itself exhibits a wild variability (heavy tails and
long range dependence) [14], which significantly impairs
the detection of anomalies.

In the case (of interest in the present work) of a single-
point measurement performed over a transit or back-
bone link, extra complications can be listed. Traffic on
such links is likely to be strongly asymmetric because
of the multi-homed nature of the network. This for-
bids the use of techniques relying on the observation of
bidirectional patterns (SYN, SYN/ACK,...). Also, tools
making use of joint spatial network-wide information
(Origin-Destination patterns) are excluded [11, 12, 17].
Backbone links aggregate at very high levels a large va-
riety of traffic of different natures, with new types of
regular applications constantly appearing, yielding ex-
tra regular variabilities. This implies the increase of
the likeliness of simultaneous occurrences of anomalies,
of undergoing known major anomalies such as worm
outbreaks and intensive large scale attacks, and of ob-
serving known and unknown anomalies (i.e., zero-day
attack). Facing such a diversity requires the use of as
little as possible prior information, regarding the nature
of the anomalies. Moreover, the huge volume of traffic
precludes to store long (or even short) term traces, and
calls for the use of low computational cost, possibly on-
line, real-time and on-the-fly techniques.

Anomaly detection methods are broadly classified
into two complementary categories: signature-based vs.
profile-based detections. The anomaly detection proce-
dure proposed here belongs to the second class. It is
based on combining two key ingredients: Sketches and
non Gaussian multiresolution (or multiscale) statistical
modeling. A random projection based on a hashing key
of IP source or IP destination divides a set of traffic data
into sketches (sub-groups) to search for deviation in a
statistical multiresolution modeling amongst the collec-
tions of sketches. Non Gaussian multiresolution statis-
tical modeling is used to extract the shaper parameter
of the correlation distribution of each sketch for multi-
ple time-scales, and computes the self-reference of the
entire sketch set. When the Mahalanobis distance of a
sketch from the reference exceeds a threshold, the sketch
is detected as an anomaly. Then, the corresponding IP
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addresses in the detected anomaly are identified by the
reverse hash function of the sketch.

The proposed method does not require a priori knowl-
edge about the traffic because it compares the behaviors
of sketches in the same data set. Our method works in-
dependent of the volume or time-scale of an anomaly,
and thus, is able to detect low-intensive and/or long-
lasting anomalies, even in one-way highly aggregated
traffic. Our algorithm uses only IP addresses and rough
packet arrival times so that no deep packet inspection is
necessary, and is designed for near real-time processing
at a single measurement point in a backbone.

This detection procedure is used to blindly explore
the large scale MAWI packet trace database [6] in order
to label the traces with anomalies to promote further
research on them. This database stores daily packet
traces from a trans-Pacific transit link over more than 6
years. The task of anomaly identification and labeling
had not been previously done on this database, except
for only rare prominent or huge anomalies. Results re-
ported in Section 4 show that our procedure enables to
detect and characterize anomalies, found to be in (unex-
pectedly) large number and variety. Also, our tool per-
forms meaningful detections despite the fact that most
anomalies have low intensities (below 1% in packet num-
ber), are hidden amongst many aggregated flows and
often occur simultaneously. Identification of the tar-
geted or faulty IP addresses is also fully operational so
that prompt reaction and mitigation is possible. The
proposed detection relies on little prior (network or sta-
tistical) information, hence is robust against significant
traffic evolution along the years. Moreover, it enables
not only the detection of known anomalies but also the
discovery of a number of unknown and unexpected traf-
fic flows, be their nature legitimate or not remains an
open issue.

2 Related work

Profile based statistical anomaly detection is an active
field of research [2, 5, 7]. To keep the amount of data
manageable, a number of contributions make use of only
high-level traffic measurements, e.g., SNMP data [2],
or IP Flow data (often sampled NetFlow or FlowScan
router reports) [2, 11]. This may imply losses of po-
tentially important information. Hence, packet level in-
formation (IP packet (or volume) count process [7], or
IP and/or TCP header [9]) can be preferred, enabling
short reaction time (down to the packet arrival time,
compared to a 5 min based flow report) and avoiding
the recourse to potentially ineffective information (as
with SNMP-MIB).

To deal with large amounts of data, anomaly detec-
tion procedures are nowadays more and more often re-

lying on dimensionality reduction tools. In the context
of network-wide measurements, Principal Components
Analysis (PCA) [11], non linear manifold learning [15]
are often used. This assumes that measurements over
many points of the network are jointly available together
with a centralized collection of data (as in [15]). This
can be inefficient to react against sudden and localized
attacks. Moreover, in the present work, we are inter-
ested in detection performed from the monitoring of a
single transit or backbone link. Inspired by research
on data streaming, the use of random projections or
sketches, has been put forward in [10, 13] for change de-
tection, information condensation or heavy hitter iden-
tification (see also [12]). In the present contribution,
elaborating on [1], we make use of sketch procedures to
split data into sub-traces and search for deviations in
a statistical multiresolution modeling amongst the col-
lection of sketches. Another major benefit of the use
of sketch procedures lies in the possibility of identifying
the attributes (e.g., IPsrc or IPdst) associated to the
detected anomalies by the reverse hash function [13].

A central issue in profile-based detection lies in per-
forming a proper statistical characterization of anoma-
lies, as advocated in [2], so that detection necessarily
consists of two steps: Model or predict an average ref-
erence traffic (with its naturally wild variability); Apply
a decision rule for observing if analyzed traffic departs
from the reference. Often, reference traffic is obtained
as a prediction from past observations, (using, for in-
stance, Holt-Winters forecasting [5, 10, 19], or Kalman
filtering [17]) or direct observation [7]. Also, refer-
ence may be obtained from multi-link measurements
when available [11, 17]. Framed in this methodologi-
cal scheme, our contribution is original insofar as the
reference traffic is determined from a single link mea-
surement as an average over sketched time series, hence
used as independent surrogate data. This avoids the
recourse to traffic prediction, a highly difficult task be-
cause of its natural variability and long range correla-
tions (see for instance [14]).

Single-link measurement profile-based detections
have often been based on a specific statistical charac-
teristic of the traffic such as spectral density or covari-
ance [8], wavelet coefficients [2, 7], temporal features
extracted from PCA, to list but a few (cf. [1, 16] and
references therein). Also, the use of non Gaussian statis-
tics has been used to seize the characteristics of normal
traffic [14]. Recently, we went one step further pro-
moting the use of non Gaussian statistics jointly over a
large range of aggregation levels [16]. This multireso-
lution non Gaussian modeling is specifically tailored to
design an anomaly detection procedure. Another origi-
nality consists of the fact that anomalies are not defined
a priori, neither from a network mechanism or from a
matched statistical pattern. An anomaly is here defined
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as a statistical change in the correlation structure of the
traffic in one sketch compared to that of other sketches.
This original use of the sketch method enables the dis-
covery of anomalies that are not known beforehand, and
may never have been observed previously.

3 Anomaly detection method

The proposed anomaly detection procedure consists of
the following steps.

Step 1: Random projections (or sketches). Pack-
ets are analyzed within sliding time-windows of dura-
tion T . For each time-window, let {ti, {xi,l, l = 1, ...4}}
denote the usual 5−tuple (arrival time stamp, IPsrc,
IPdsst, Psrc, Pdst) for each packet i = 1, ..., I. Let hn,
n ∈ {1, ..., N} denote N independent k−universal hash
functions, generated from different random seeds. Such
hn is constructed using the fast-tabulation method pre-
sented in [18]. Let M stands for the (identical) size of
the hash tables. Let Ai denotes the hashing key (in the
present study, Ai = IPdsti or Ai = IPsrci). For each
hn, the original trace {ti, {xi,l, l = 1, ...4}, i = 1, ..., I}
is split into M sub-traces, {ti,mn,i = hn(Ai) = m, i =
1, ..., I}n,m.

Step 2: Multiresolution Aggregation. The sub-
traces {ti,mn,i = m, i = 1, ..., I}n,m are aggregated
jointly over a collection of levels ∆j , j = 1, ..., J to form
the Xn,m

∆j
(t) time series.

Step 3: Non Gaussian modeling. In a former work,
we proposed [1, 4, 16] that the marginal distributions
f∆(x) of aggregated traffic time series can be satisfac-
torily described using Gamma laws Γα∆,β∆ , i.e., non
Gaussian distributions for positive random variables,

defined as Γα,β(x) = 1
βΓ(α)

(
x
β

)α−1

exp
(
− x

β

)
, where

Γ(·) is the usual Gamma-Euler function. The scale pa-
rameter β mostly acts as a multiplicative factor (if X is
Γα,β , then λX is simply Γα,λβ). The shape parameter
α controls the evolution of Γα,β from a highly asymmet-
ric stretched exponential shape (α → 0) to a Gaussian
shape (α → +∞). More precisely, 1/α can be read as a
measure of the departure of Γα,λβ from the normal dis-
tribution N (αβ, αβ2). Furthermore, Γα,β distributions
are stable under addition: Let X and X ′ denote two in-
dependent Γα,β and Γα′,β RVs, then X +X ′ is Γα+α′,β .
This is of particular interest when related to the aggre-
gation procedure: X2∆(t) = X∆(t)+X∆(t+∆). Indeed,
should X∆ be well modeled with a Γα∆,β∆ , then, it is ex-
pected that X2∆ could be well modeled with Γα2∆,β2∆ .
Independence between X∆(t) and X∆(t+∆) would im-
ply α∆ = α0∆ and β∆ = β0. Due to the correlations
that exist amongst X∆j

(t) and X∆j
(t+∆j), departures

of α∆ and β∆ from α∆ = α0∆ and β∆ = β0 are ascer-

tained. Therefore, the Gamma description combined at
various resolutions accounts not only for the marginal
distributions of the aggregated traffic but also for its
short-time statistical dependencies along time.
From the Xn,m

∆j
(t), the corresponding collection of

{(αn,m
∆j

, βn,m
∆j

), j = 1, ..., J} parameters are estimated
(estimations being performed by means of standard
sample moment procedures).

Step 4: Reference. For each hn, average behav-
iors and typical variabilities are estimated as: αm,R

∆j
=

〈αn,m
∆j

〉m and σ2
m,α,∆j

= 〈〈αn,m
∆j

〉〉m, where 〈·〉m and
〈〈·〉〉m denote the standard sample mean and variance
estimators, respectively, computed from m = 1, . . . ,M .

Step 5: Statistical distances. Anomalous behaviors
of the {(αn,m

∆j
, βn,m

∆j
), j = 1, ..., J} with respect to ∆j ,

are measured by computation of statistical distances
from the reference behavior αm,R

∆j
. Many different sta-

tistical distances can be used, cf. [3] for a review. Here,
we use the Mahalanobis distances (MD) to give the same
weight to all scales:

D2
αn,m =

1
J

J∑
j=1

(
αn,m

∆j
− αm,R

∆j

)2

σ2
m,α,∆j

. (1)

When Dαn,m ≤ λ, Xn,m
∆j

(t) consists of normal traffic;
when Dαn,m > λ, Xn,m

∆j
(t) is said to contain one (or

more) anomaly(ies), where λ is the detection threshold
to be chosen. Let us put the emphasis of the fact that
the use of a multiresolution distance implies that the
detection procedure is not based on a change in volume
of the traffic but rather on a change in its short-time
correlation structure. Identical procedures are obtained
for β, mutatis mutandis. However, detection based on
this distance is not used in this paper.

Step 6: Anomaly Identification by Sketch Com-
bination. To finish with, reversing the hashing pro-
cedures enables to identify the hashing keys associated
to the detected anomaly(ies). When detections are per-
formed in the m-th output of the n-th hash function, the
corresponding attributes Ai are registered in a detection
list An

i . Combining the N functions hn and taking the
intersection of the An

i yields a final list of attributes Ao
i

that correspond to detected anomaly(ies). In this re-
spect, the use of k-universal hash functions, with k ≥ 2,
plays a key role as it guarantees that the average num-
ber of collisions between attributes Ai diminishes ex-
ponentially fast with N , a collision consisting of any
given pair of Ai chosen at random amongst all possi-
ble falls within the same outputs mn for each of the N
hn. If Ai = IPdsti and NIP is the total number of IP
addresses observed in the analyzed traffic, the average
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number of collisions reads: #C = NIP M−2N . More-
over, choosing k ≥ 4 ensures that the variance of this
#C remains also small. Obviously, to lower the prob-
ability of random collisions and hence ensure relevant
detections, we need to have this #C ¿ 1. In Section
4, we observe that using only N = 8 hash functions is
enough to ensure a correct identification of IPdst or IP-
src. Therefore, the procedure proposed here not only
performs the detection of an anomaly (and provide the
time windows in which it occurs), but also enables the
identification of its Ai attribute. This is a key feature
allowing for the identification and classification, hence
mitigation, of anomalies.

3.1 Performance and Validation

The validation and the assessment of the performance of
the detection procedure described above raise two issues
of different natures.

First, the detection tools are applied to a known
database. Generally, statistical detection procedures
always face the false positive/false negative trade-off,
which, in the present context, is controlled by the choice
of λ. Decreasing λ amounts to allow detection when
distances are smaller: This results in a increase of the
correct detection rate, at the price of an increase of false
negative, and vice versa. To assess such detection per-
formance in terms of false positive/false negative scores,
also referred to as receiver operational curves (ROC), we
need to have a validation database, with known anoma-
lies occurring at known times. Therefore, we created
our own database consisting of actual traffic traces con-
taining real anomalies [4]. They were generated by our-
selves, in a controlled and reproducible manner, using
real network tools such as trinoo, tfn2k,... and mostly
consisted of mixed flooding DDoS attacks. These ex-
perimental set-up and database allowed us to show that
the proposed tool exhibits very satisfactory ROC, even
for anomalies whose volume is in the order of percent
of the total traffic volume. The reader is referred to
previous works [1, 4] for details.

Second, when applying detection tools to a database
for which anomalies are unknown, one cannot compute
false positive/false negative scores. Therefore, valida-
tion requires an a posteriori manual inspection of traffic.
This is detailed in Section 4.

4 MAWI database Anomalies

4.1 MAWI database

The MAWI traffic repository of the WIDE project has
been archiving raw packet traces measured over six
years (from 2001-2006) at one of the trans-Pacific links
(samplepoint-B, 18Mbps CAR) between Japan and the

Table 1: Parameter description
symbol description
n ∈ N sketch number (number of hash functions)
m ∈ M sketch output number (size of hash table)

∆j aggregation time scale j ∈ J
Xn,m

∆j
(t) aggregated hashed time series for scale ∆j

αn,m
∆j

the estimated α of Gamma function fit for Xn,m
∆j

(t)

Dαn,m Mahalanobis distance of the estimated α
λ threshold value

United States [6]. It is an academic network and the
traffic on this link is mostly international commodity
traffic to and from several Japanese universities. The
database consists of 15-minutes-long traffic traces cap-
tured at 2pm, Japan time, by tcpdump and an IP-
address anonymization tool. The traces amount to more
than 2,000 traces or 600GB in size.

Analyses indicate that, for most of the days, the traf-
fic on this link had been almost saturated. Also, they
show that traffic is asymmetric in some periods, mostly
because of route changes, and that some include major
virus outbreaks. This study constitutes a first step to-
wards labeling of anomalies contained in this database,
and has explored data from weekdays, one day per two
weeks from 2001 to 2006. Traces have been analyzed
independently for each direction, so as to study asym-
metry and differences between the US to Japan and
Japan to US anomalies.

4.2 Analysis methodology

The parameters of the detection procedure are set to:
N = 8,M = 32,∆0 = 5ms, ∆j = ∆02j , with j =
1, ..., J , and J = 10 ; λ = 0.5 (see also Table 1). Robust-
ness of the results described below with respect to varia-
tions of these parameters has been checked. Let us note
first that the choice of N,M results from a trade-off:
Increasing the number of sketch outputs M reduces the
number of sketches N that are necessary for identifica-
tion, hence diminishes the computational cost; However
too large M may result in too low aggregated volume
of traffic per sketch, hence in a failure of the multires-
olution gamma modeling. The choices of ∆0 and J are
motivated by previous work [1, 4, 16] showing that the
relevant time scales for anomalies range from 1ms to 1s.
The choice of the threshold λ is motivated by previously
obtained ROC (cf. [1, 4]).

The use of a detection tool on a database where
anomalies are not labeled requires a posteriori valida-
tions. We have verified for all studied traces that, when-
ever a (collection of) attribute(s) is detected as associ-
ated to an anomaly, this corresponds to either of the
two following situations. First, inspection of the packets
sharing this attribute(s) reveal well-known anomalies or
attacks (DDoS, flooding, portscan,...). Second, there
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Figure 1: Case study 1: Aggregated traffic (Japan
to USA) split by protocols, aggregation over 1s. Proto-
col split is here for convenience, but not actually used
in the detection procedure.

are instances where the detection is associated to un-
expected traffic features that correspond to an activity
that cannot be identified (new protocol, dysfunctions,
in some cases elephants, and maybe new attacks). In
any case, traffic associated to alarms is not regular. On
the other hand, inspection of the traces by an expert
shows that when choosing at random sketch outputs
with low distance (i.e., where no detection is made), no
anomaly amongst flows carrying more than 1% of the
total volume of the traffic can be identified. Hence, de-
tection performance in terms of false positive and false
negative is satisfactory. The remainder of this section
details with the analysis of two representative case stud-
ies, and comment the general results about anomalies
obtained from the database.

4.3 Case study 1: low-intensive long-
lasting spoofed flooding

We first demonstrate the ability of detecting low-
intensive long-lasting anomalies in a trace. Fig. 1 shows
the aggregated time series of a 15-min sample trace,
split by protocols to illustrate that no obvious anomaly
can be seen (by eye), even with such a representation.
Note however that detection is made without this split
by protocol, IPdst is used as the hashing key. Fig. 2
shows distances for the M = 32 outputs for two given
hash functions. One sketch output (left plots, circle) is
constantly (for all j) above the detection threshold λ,
systematically yielding the largest distance Dαn,m (right
plots) and hence an alarm. However, for a single hash
function, several outputs are above the threshold (cf.
Fig. 2, left plots), corresponding to many IPdst (23670
out of the 189361 in the trace). Table 2 demonstrates
how, by combining up to 8 different hash functions so
as to rule out random collisions, the detection proce-
dure raises finally only one alarm, here associated to an
anomaly on a single IPdst (marked with circles in Fig.
2). If one filters out anomaly amid the IPdst receiving

1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

0.5

1

1.5

0 5 10 15 20 25 30
0

0.5

1

1.5

1 2 3 4 5 6 7 8
−1.5

−1

−0.5

0

0.5

1

1.5

0 5 10 15 20 25 30
0

0.5

1

1.5

Figure 2: Case study 1: Distances for two different
hash functions. Left: (αn,m

∆j
− αm,R

∆j
)/σm,α,∆j vs. j

curves; most curves, but two (top plot) or three (bottom
plot), fall within the ±λ normality band for all j. Right:
sorted Dαn,m,m∈1,...,M ; One sees that several sketch out-
puts have distances above λ. Combining sketches, one
raises alarms by retaining only IPdst whose distances
remain consistently above threshold for all hash func-
tions. Here, circles, triangles and diamonds mark the
sketch outputs containing the mixed flooding attack,
the DNS anomaly and the SSH transfer, respectively.

at least 1000 packets, only N = 6 hash functions would
have been necessary to identify this anomaly (cf. Table
2 last row). By packet inspection, the detected anomaly
is identified as a mixed flooding attack against a single
IPdst. Several protocols are used simultaneously: TCP
(no SYN packets), UDP and ICMP. The distribution
of packet size also follows a profile that mimics that of
real traffic to make it harder to detect the attack. IP
source addresses are spoofed and destination port is 0.
These features clearly revealed the attack nature of this
anomaly.

Fig. 2 indicates that, for a number of different hash
functions, two other sketch outputs (marked with tri-
angles and diamonds) often produce distances Dαn,m

above λ. Fig. 2 (left plots) shows that it is mostly
due to distances being above λ for specific ranges of
time-scale j: around 10ms for triangles and 50ms and
up for diamonds. Table 2 indicates that one of these
alarms (triangles in Fig. 2) remains until the use of
the 6-th hash function and is then removed by further
sketching. Investigating traffic reaching the correspond-
ing IPdst, we found that it corresponds to DNS traffic
having a specific, periodic structure which appears as
anomalous insofar as such a periodicity is not common
for aggregated traffic. Also, we identify diamonds to
be a long, but low volume, download via SSH protocol:
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N 0 1 2 3 4 5 6 7 8

Mλ 4 2 5 7 4 3 3 4

#IP 189361 23670 1479 231 50 6 0 0 0

#IP∗ 710 88 5 1 0 0 0 0 0
#IP 189361 23472 1444 249 56 11 2 2 1
#IP∗ 710 90 6 2 2 2 1 1 1

Table 2: Case study 1: Identification. N: number
of hash functions used. Mλ: number of sketch outputs
above threshold λ; #IP : expected number of IPdst
falling in those outputs; #IP∗: same as previous for
IPdst receiving more than 1000 pkts; #IP : actual num-
ber of IPdst belonging to those sketch outputs, hence
raising alarm; #IP∗: same as previous for IPdst re-
ceiving more than 1000 pkts. This shows that combin-
ing a reasonable number of hash functions, IPdst with
anomalies are found, whereas the expected number of
accidental collisions goes to zero.

For some hash functions, it is classified as anomalous
because it also exhibits some form of periodicity, with
a period larger than 100 ms. It might happen that, de-
pending on the remainder of the traffic that fall within
the same sketch output, this SSH download dominates
at large scales and hence causes the distance to bypass
the threshold. However, both DNS and SSH download
consist of legitimate traffic. It is therefore a satisfac-
tory output of our detection tool that the use of a large
enough number of sketches removes them from the list
of anomalies.

Let us further mention that the detected mixed flood-
ing with spoofing attack corresponds to only 1% of the
traffic and is by far not the largest elephant in the trace;
this illustrates that our procedure is not simply focused
on volume anomalies. Moreover, the anomaly lasts for
the entire fifteen minutes of the analyzed trace. Be-
cause detection arises from comparisons between sketch
outputs containing normal traffic and those carrying
anomalous traffic, it does not require that the anomaly
starts within the analyzed time window and does not
rely on a change in time: hence the procedure is not
fooled here. To validate that no anomaly was missed,
we have systematically inspected traffic towards IPdst
that received more than 0.1% of the total volume of
the traffic and checked that no other anomaly could be
identified.

4.4 Case study 2: short-lived portscan

Next, we focus on detection and near real-time track-
ing of short-lived portscan anomalies. Fig. 3 (top left)
shows a directional aggregated time series. Detection is
conducted using IPsrc as the hashing key. Fig. 3 (bot-
tom left) shows distances that for a given hash function

N 0 1 2 3 4 5 6 7 8

Mλ 13 11 8 11 13 13 13 12

#IP 35365 14367 4938 1234 424 212 86 34 12

#IP∗ 376 152 52 13 4 1 0 0 0
#IP 35365 14326 5031 1276 470 194 77 44 21
#IP∗ 376 163 53 13 8 7 6 6 5

Table 3: Case study 2: Identification. Same legend
as Table 2.

(#3 in Table 3): 8 sketch outputs are above threshold λ.
Note that distances Dαn,m (for m ∈ 1, ...,M) decrease
more slowly than in Fig. 2, where IPdst is the hashing
key. Combining the N = 8 hash functions finally retain
21 IPsrc addresses, amongst which only 5 emit more
than 1000 packets (cf. Table 3), retained as meaningful
anomalies.

An a posteriori inspection of the corresponding pack-
ets shows that 3 of them can be identified as port scan-
ning. The first detected portscan aims at finding FTP
servers, it corresponds to only 0.9% of the total volume
of the traffic. The aggregated time series corresponding
to the output of one hash function (#3) containing this
anomaly is depicted in Fig. 3 (top right) and reveals
that this anomaly lasts for a little more than 4 minutes.
The second detected portscan consists of bursts of a
few seconds gathering around 2% of the total volume
of the traffic, and tracks HTTP servers. The third one
searches for all open ports in hosts over a small subnet-
work (around a few thousands hosts, 0.6% in volume,
one minute long). The fourth anomaly consists of a
HTTP flood, i.e., a large number of what can be seen
as HTTP requests (4% of the traffic); all source ports
are identical hence excluding simple parallel download-
ing. The fifth anomaly is a heavy traffic (4.5%) using
GRE (generic routing encapsulation) protocol. GRE
packets likely carry IPv6 traffic in the link, though it
is difficult to decide whether it consists of legitimate or
illegitimate traffic.

Let us further illustrate that the detection procedure
is not simply volume based. It does not simply detect
the largest elephant of the trace: Indeed, the smallest
(in packet number) detected anomaly is only the 20th
largest elephant. Also, we have checked that the 15
other largest elephants are not classified as anomalies
and consist of normal traffic (HTTP exchanges, TCP
packets towards non standard ports, IRC, other data
that does not seem to resort to worm activity). Finally,
the technique has the potential to be used over much
shorter time windows. Fig. 3 (bottom right) depicts,
for the first portscan anomaly, the distances Dαn,m vs.
time, computed using T = 1 min long sliding windows.
For the entire duration of the portscan (corresponding
to 6 time-windows), distances are above the threshold.
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Hence that the procedure perfectly locates the anomaly
in time, without the recourse of rupture or a volume
based detection procedures. That is, the anomaly is
seen because its short time correlation structures differ
from those of the normal or background traffic.
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Figure 3: Case study 2. Top: aggregated time se-
ries of full traffic (left) and for a sketch output where
a FTP portscan anomaly is detected (right), aggrega-
tion over 5ms. Bottom left: sorted Dαn,m,m∈1,...,M ; 7
sketch outputs are above the threshold λ. Bottom right:
Dαn,m,m∈1,...,M computed within T = 1min time win-
dows for the sketch output plotted above. The portscan
lasts only a few minutes, between minutes 4 to 9 and is
well detected at its precise times of occurrence.

4.5 Typology of the anomalies

Let us now turn to a higher level description of the
anomalies found by means of our procedure. The most
surprising result is the observation that anomalies were
found in almost every trace over the 6 years and, in most
cases, traces contained not a single but many anoma-
lies. Also, the average number of detected anoma-
lies is increasing over the years, and so is their vari-
ety. In 2001, anomalies mostly consisted of straight-
forward flooding attacks. Over the years, there is an
increasing number of detected anomalies that turn out
to be hard to identify. Some correspond, for instance,
to IPdst receiving a small number of packets from a
large number of different hosts (hundreds or thousands)
on higher ports. This may be related to peer-to-peer
(P2P) nodes/servers traffic. No further information is
available to decide whether this is legitimate or not.
Elephants corresponding to HTTP traffic (and in some
cases to FTP or SSH connections) are sometimes de-
tected as anomalies, but this tends to decrease over the
years because of the increase of the number of used IP
addresses found in the traces: hashing efficiency for ob-

taining normal traffic reference is improved by the mul-
tiplication of background traffic. Traffic is found asym-
metric on this trans-Pacific link, and there are differ-
ences even in the most frequently observed anomalies
depending on the direction of traffic. Notably, for large
scale attacks, SYN flooding is commonly observed from
US to Japan while ICMP flooding is more usual in the
opposite direction.

When using IPdst as a hashing key, we found a variety
of anomalies. There are a lot of flooding of various kinds
(UDP, TCP-SYN, TCP, ICMP, sometimes mixed), at-
tacking sources being either isolated, distributed (typ-
ically, a couple of dozen of sources) or spoofed (fixed
”impossible” IP of the same subnetwork or thousands
of random IPs). The involved ports are often known
ones (FTP, SSH, HTTP, MySQL). Sometimes, they are
selected randomly (anomalies towards a single high port
or several different ports), and more rarely consist of
invalid ports (port 0). Also, we found anomalies re-
lated to DNS traffic (very regular, for small periods of
a few tens of seconds) from a limited number of hosts.
Some anomalies consist of point-to-point GRE traffic.
On very rare occasions (actually, a couple in 6 years),
we observed systematic scans of all the ports of a single
IP address.

When hashing on IPsrc, one naturally finds again
some of the anomalies listed above. IPsrc hashing re-
veals a large variety of scan activities, mostly towards
HTTP, SSH, MySQL, FTP. More recently, but still
rarely, we found scans targeting the usual P2P ports
or even larger sets of ports (some not identified). Some
hosts responding to requests from a large number of
different IP addresses are detected: this may be false
alarms (HTTP, MySQL traffic) but it is associated from
time to time to some traffic of worms/virus. Note that,
by construction, the procedure does not aim at detect-
ing worms/virus packets that are best found from their
signature. However, it can detect the outburst of new
worms when only a few hosts are infected (therefore
having a traffic structure different from other, uncom-
promised hosts).

Concerning the duration of the anomalies, a large
number of the detected ones (such as flooding/transfer
anomalies) last for much longer than the entire 15 min-
utes (this does not fool our detection procedure which
needs not observe beginnings or ends of the anomaly to
be efficient). There are also small bursts, with dura-
tion ranging from a couple of seconds to a few minutes,
especially of SYN and ICMP floodings. As previously
mentioned, they can be precisely located using short
(1min or 30sec) analysis time windows. We have found
attacks lasting longer than the day, and one of them
kept going in all traces over 9 months. Scans are usu-
ally much shorter, typically in a few minutes. Some of
them consist of the regular repetition of a brief pattern.
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Rare cases of large scale attacks (containing up to 30%
of traffic) were also observed. However, most anomalies
have much lower volume, and we tracked all anomalies
with volumes down to 0.1% of the total traffic volume.
They are hidden behind elephants of regular traffic in
most cases, yet correctly detected.

5 Conclusions and Perspectives

The detection tool proposed here appears to be particu-
larly relevant to extracting anomalies from single-point
backbone measurements. We were able to find many
anomalies in the database of the MAWI repository, in
an unexpectedly large number. This is the first report
on labeling the traces in the repository with anomalies,
and further analysis on this database is to be pursued.

Based on its multiresolution properties, the detec-
tion tool is able to detect short-lived anomalies as well
as longer ones; we have put the emphasis on the fact
that the procedure should not be reduced to a rupture
change, or a volume-based detection, as many profile-
based are: due to the non Gaussian modeling used as
its background, the detection method is sensitive to
the statistical characteristics (short time correlations)
of anomalies hidden in large scale traffic.

This detection tool benefits from a very low compu-
tational cost so that one can easily think of real-time
(on-line, and on-the-fly) implementation and hence mit-
igation, even on loaded backbone networks. The choice
of the type of attribute that is used as input for the hash
function determines the type of anomalies that are in-
vestigated: For instance, in the present study, hashing
the IPdst address is more intended toward the detection
of flooding attacks, while selecting the IPsrc address is
prone to reveal port scan operations. In particular, an
improvement of the method would be hashing jointly
with respects to two or more attributes, that could be
fruitful to detect other kinds of anomalies. Still, the
present study has covered almost all the well-known,
classical anomalies that are usually found and enabled
the automatic discovery of a number of new anomalies
whose nature is being investigated.

One practical issue for further research is to add a
feature to filter specific known anomalies. As in the
DNS traffic in our results, legitimate traffic could be
identified as an anomaly if it has a unique traffic pat-
tern. Thus, to reduce false alarms, there must be a way
to filter certain traffic patterns once they are labeled as
legitimate by other means.

Another important issue is to evaluate the algorithm
against sampled traffic or NetFlow data, which is par-
ticularly of interest to backbone network operation.
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