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Abstract— Understanding actual network and traffic proper-
ties of the Internet is essential to determine network parame-
ters in large-scale network simulations. However, there is little
knowledge about the distribution of macroscopic traffic demand
for each node, though the topological properties of the network
have been focused on. This paper investigates the distribution of
traffic volume to and from a node at an organization level. As
traffic volume data, we used byte counter data of all interfaces
in all backbone routers in a nation-wide research and education
(R&E) network in Japan. First, we show that traffic volumes to
and from a node in the network are characterized by a lognormal
distribution, which has a slower decay than a normal distribution,
but a faster decay than a power-law distribution. Thus, an
assumption in which the traffic demand is uniformly random
or Gaussian distributed is not appropriated to model the traffic
demand in large-scale network simulation. This finding implies
that one has more possibility to observe an increase of delay
or packet drop in simulation, comparing to the result that uses
uniformly-random or Gaussian traffic demand, because of the
locality of traffic. Moreover, we observed that in 87% of nodes, a
traffic volume from the backbone to the node is 1-10 times larger
than that for the opposite direction. This is a similar usage pattern
appeared in residential light-user broadband traffic. Finally, we
introduce a simple model to explain the distribution of traffic
demand, based on a multiplicative growth of traffic volume. We
confirm that the multiplicative model can reproduce a lognormal
distribution of traffic volume by simple numerical simulation.

I. INTRODUCTION

Simulation is still an essential method to verify usefulness
of new network algorithms for routing, congestion control,
and peer-to-peer traffic control, even though large-scale testbed
environments are now available. For large-scale simulation,
network traffic and topology models potentially affect the total
performance of the proposed algorithm. In the worst case, the
performance results may not make sense because inappropriate
network and traffic models were chosen [5].

There have been many studies to characterize statistical
properties of network topology and traffic over years. Specifi-
cally, characterization of the inter- and inner-AS level Internet
topologies is a current hot topic in the network research fields
[4], [16], [1], [19], [10], [14]. Recent studies showed that
the Internet topology is far from a sort of random graph,
and is basically characterized by scale-free and small-world
properties [4], [16]. The former indicates the appearance of a
power-law distribution of node degree, and the latter means the
network has the small diameter and locally clustered property.
These topological properties clearly affect the performance of

the network [1]. Although theoretical and empirical studies
are revealing more and more topological characteristics, these
studies might still be far from the perfect model.

Toward finding for more realistic parameters in large-scale
network simulation, following issues at least must be clarified;
(a) the statistics of the network topology, (b) the assignment
of the link property (i.e., bandwidth), (c) the traffic demand
of each node.

This paper focuses on issue (c). To quantify the traffic
demand in a large-scale network, ideally, traffic distribution per
application should be characterized spatially and temporally,
then an appropriate mixture of those traffic distributions per
node should be identify as the source and sink of traffic in
a node. However, there is little knowledge about the traffic
distribution among nodes currently, although many methods
have been proposed for estimating a characteristics of OD
pairs (origin-destination) by using packet trace [2], [11], [21],
[8]. Actually, a packet trace from a single backbone link is
still useful for the estimation of the traffic demand of a node.
However, it is highly difficult to capture all packets to and
from nodes at all the related links in a real large-scale inter-
and inner-AS network, especially in a hierarchical network.
Also, there is an alternative approach that quantifies the rela-
tionship between the population of countries (or region) and
the geographic location of Internet resources (e.g., router and
interface) [9]. However, this method cannot provide us actual
traffic demand, because it is hardly to map the population into
a finer scale than the country-scale, especially into AS-level.

Hence, we need to clarify what kind of distribution (i.e.,
power-law, lognormal, uniform, or normal distribution) should
be assumed in simulation from macroscopic level. In this
paper, as a first step toward a better understanding of a traffic
demand distribution in a real network, we investigate the traffic
demand and growth in a nation-wide R&E network, called
SINET [18], which provides network connectivity to over 700
organizations in Japan. Our analysis is based on the traffic
volume data measured by the interface counter of almost all
routers in our network via SNMP, rather than a packet traffic
trace in a backbone.

The main contributions of our paper are as follows; (1) We
found that the distribution of traffic to and from a node in
the network is widely spread, and well characterized by a
lognormal distribution. Thus, one cannot set traffic demand
of a node in a given network by uniformly randomly or in



a Gaussian manner. The direct implication of this result is
that the traffic demand followed by the lognomal distribution
will cause the increase of the delay and packet drop for
an performance evaluation of a new algorithm, because of
the locality of traffic. (2) We introduced that the asymmetric
nature of the distribution of traffic demand distribution can be
explained by a multiplicative growth model. Thus, this implies
that one should use the lognormal model as long as the traffic
growth of the network is multiplicative as widely observed in
several networks.

II. DATASETS

We used the node traffic data measured at a Japanese
nation-wide R&E network called SINET. SINET provides
an Internet connectivity to over 700 organizations, corre-
sponding to universities, colleges, and research laboratories.
For organizations, it provides commodity network services as
well as special-purpose services for “big science” such as
astronomical research, high-energy physics research, and so
on. We analyzed commodity traffic and special-purpose traffic
separately, because dedicated lines were deployed for the latter
purpose.

We monitored each network link between the backbone and
an organization for administrative purposes (We refer to an
organization as a node in the following sections). However,
deployment of a flow export architecture (e.g., NetFlow)
to all links is costliness, instead, we have been collecting
interface counter values of almost all routers in our backbones
via SNMP, and archiving the per-interface traffic logs with
RRDtool [13]. Thus, while the data are too coarse-grained to
analyze a dynamics of microscopic flows, the data allow us
to fully investigate the macroscopic behavior of traffic in the
large-scale network. Each raw traffic trace consisted of mean
values of traffic volume whose bin size was 2 hours passing
through the link between a node and its upstream for 5 weeks
in May-Jun, 2006.

For the analysis, the mean traffic volume during 5 weeks
was calculated for each node. Our data trace included only
commodity traffic generated by end-users; thus, it did not
count any dedicated lines for big science. We also excluded
the traffic data of the edge routers between the network and
the rest of the Internet (i.e., the international links, commercial
links, and other R&E network links). This is because that we
cannot identify any node information outside our network from
these data. Thus, the traffic amounts of incoming and outgoing
were different in our analysis. Furthermore, we normalized a
mean traffic volume of node because of a security reason.

In the following sections, we use the terms “incoming” and
“outgoing” from the viewpoint of backbone. The Incoming
traffic signifies the traffic from a node to the backbone, corre-
sponding to the upload traffic from the end-user’s perspective.
The outgoing traffic flows from the backbone to a node.

III. ANALYSIS RESULTS

One of the main purposes of this research is to characterize
the functional form of the distribution of traffic volume for
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Fig. 1. Result of least square fitting of incoming traffic (top) and outgoing
traffic (bottom). The x-axis indicates the log-scale traffic volume and the y-
axis shows a cumulative distribution. The fitting functions are a lognormal
distribution and a Pareto distribution

each node in the network. To identify the functional form, we
fitted two typical functional forms having a long-tail to the
data plots by least-squares fitting; a Pareto distribution and a
lognormal distribution. The probability density function of a
Pareto distribution is given by

p(x) = ax−(a+1), (1)

for a > 0. a is called as a shape parameter controlling a
burstiness. A Pareto distribution is a well-known distribution
for modeling Internet traffic time series [15]. The probability
density function of a lognormal distribution is given by

p(x) =
1

x
√

2πσ2
exp(

−(log x − µ)2

2σ2
) (2)

where µ is the mean of log(x), and σ is the standard deviation
of log(x). Thus, the mean of p(x) is exp(µ + σ2/2) and
the varianceis exp(2µ + σ2)(exp(σ2) − 1). A lognormal
distribution decays faster than that of a Pareto distribution, and
much slower than that of a normal distribution by definition.
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Fig. 2. The growth of the backbone traffic volume

We did not fit the plots to a normal distribution because the
plots clearly have a stretched shape.

The best fit among two functional forms was by the lognor-
mal distribution, as shown in Figure 1. It is apparent that the
fit of the lognormal distribution covers a wide spread of both
incoming and outgoing traffic volumes. More interestingly,
both traffic volumes can be modeled with the same functional
form but with different mean and variances.

Next, we analyzed the growth rate of the traffic volume
in the network. To calculate the total traffic volume in the
network for a month, we summed up incoming mean traffic
volumes of nodes and incoming mean traffic volumes of the
border links between our network and the rest of the Internet.
The same calculation was carried out for the outgoing mean
traffic volume. These calculations guaranteed to avoid double
counting of traffic volumes.

Figure 2 displays the growth of the mean traffic volume in
the backbone over 13 months from 2005 to 2006. The volumes
are normalized to the volume in May 2005. In principle, the
incoming and outgoing traffic volumes would be the same;
however, some traffic data were lost due to frequent changes
in the network configuration. The traffic volume of the R&E
network is characteristically affected by the behavior of stu-
dents, who appear and disappear with the seasonal variation;
traffic volume decreases during summer and spring vacations.
However, ignoring the seasonal variations, the estimated traffic
growth rate was 50% per year. This value is consistent with
the traffic growth rate in IXes and that for the residential
broadband users in Japan described in [6], [3].

Finally, we plot the cumulative distribution P (> ρ) of
outgoing/incoming ratio ρ of mean traffic volume in a node in
Figure 3. ρ > 1 indicates a node where an outgoing volume
is larger than an incoming one, as an information consumer.
On the other hand, a node with ρ < 1 corresponds to an
information supplier. In the special case, ρ = 1 is a node
having the same incoming and outgoing traffic volumes. We
found that only 13% of nodes generates more incoming traffic
volume than outgoing one. In other words, 87% of nodes are
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Fig. 3. Cumulative distribution of outgoing/incoming ratio of mean traffic
volume.

more downloading than uploading. 5%- and 95%-percentiles
are 0.4 and 11.3, respectively. Since our data set did not
include big science data, those data were mainly generated by
interactive end-users in an organization. Because the main us-
ages of network such users are likely web browsing, streaming,
video-conference and a few peer-to-peer software, these traf-
fic patterns tend to indicate download-dominant asymmetric
nature. Furthermore, we hardly confirmed a clear difference
in the outgoing/incoming relationships among the types of
data link media from a node to the backbone, except for
the bandwidth limitation. These results supports an idea that
a statistical behavior of both incoming and outgoing traffic
volumes representing the behavior of aggregated users can be
modeled by a unique functional form.

IV. REPRODUCTION MODEL

In the previous section, we obtained evidences to estimate
the distribution of traffic volumes for each node in the network.
This section discusses a reproduction mechanism of the traffic
volume distribution characterized by a lognormal distribution.

A simple and well-known model to reproduce a lognormal
distribution is the one proposed by R. Gibrat [7]. This model
is based on a multiplicative stochastic process, and it was
originally proposed for explaining the distribution of incomes
for individuals/companies in the economic research field.

In terms of the traffic volume distribution, a traffic volume
x(t + 1) of a node at time t + 1 is given by

x(t + 1) = b(t)x(t). (3)

Here, b(t) corresponds to the growth rate satisfying an ide-
ally independently distributed stochastic variable with positive
values. The main idea is that the random growth of the traffic
volume is expressed as a percentage of the current weight, and
is independent of its current actual value. Thus, if the process
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Fig. 4. The numerical simulation result of the multiplicative model: (a) the
plot after 20 iterations of multiplicative growth, (b) the plot after 40 iterations
of multiplicative, and (c) the plot after 20 iterations of multiplicative growth
and more 20 iterations of additive growth.

is iteratively used, one obtains

x(t+1) = b(t) ∗ b(t− 1) ∗ · · · ∗x(0) = (
t∏

j=0

b(j)) ∗x(0), (4)

where x(0) is the initial traffic volume of a node selected
from uniformly randomly distributed variables. One takes the
logarithm of the above equation,

log(x(t + 1)) =
t∑

j=0

log(b(j)) + log(x(0)). (5)

This means that log(x(t + 1)) follows the normal distribution
by the central limit theorem. Therefore, x(t + 1) follows
a lognormal distribution. In other words, the distribution of
traffic volume for nodes in the network follows a lognormal
distribution when each node increases its traffic according to
Eq.(3). It should be emphasized that the multiplicative increase
is essential for the reproduction of a lognormal distribution; the
above equations clearly indicate that the additive increase (i.e.,
x(t + 1) = x(t) + b(t)) only yields to a normal distribution.

To apply this model to our network data, we should discuss
the growth rate of the traffic volume. The results shown
in Fig.4 and Ref. [3] estimated that the growth rate of the
macroscopic traffic is 30-50% per year. Additionally, Ref. [3]
reported that traffic growth rates have been stable for recent
four recent years. We have no information on the growth of
traffic volume in the target network before 2004; however,
it is plausible that the growth rate would be almost the same
value as that of the residential broadband traffic. Also, another
evidence for supporting the assumption is that a multiplicative
traffic growth was appeared in Internet backbone traffic in US
during 1990-2002 [12].

We performed simple numerical simulations of the process
we explained above; There are 1000 nodes each of which
has an initial traffic taken from a uniformly random value,

1 ≤ x0 ≤ 104. In each time step t, the traffic volume in a
node increases, according to Eq.(3), where b(t) is a uniformly
random value 1.0 ≤ b(t) ≤ 2.0. Figure 4 shows the distribu-
tions of traffic volumes reproduced by the model. The plots
for 20 and 40 iterations of the multiplicative growth model
clearly show a lognormal distribution from the initial state
with uniformly random distribution. Thus, we can reproduce
the observed traffic volume distribution over nodes in the
real network. Moreover, in order to investigate an effect of a
change of traffic growth patterns, we carried out an additional
simulation consisting of 20 iterations of the additive growth
followed by 20 iterations of the multiplicative growth. The
shape of the resulting plot still resembles that of 20 iterations
in higher traffic volume, though there is a difference in smaller
traffic volume due to the additive growth. In conclusion, the
effect of the multiplicative growth still remains even if it
changes to the additive one 1.

V. CONCLUDING REMARKS

This paper analyzed the distribution of traffic demand of
nodes in a network, for the purpose of determining suitable
network parameters for large-scale simulations. By using
interface byte counter information, we first showed that the
distribution of the traffic demand can be modeled with a
lognormal distribution quite unlike a uniformly random, or
a Gaussian distribution. This is a pessimistic message; lognor-
mal distributed traffic exhibits a highly asymmetric nature, so
that it likely causes longer delays and more possibility of the
congestion in comparison with the result of setting traffic to be
randomly located. The asymmetric nature of the traffic demand
of a user (or a flow) has also been reported in Refs [2], [17],
[6]. They did not identify the functional form of the traffic
demand distribution, although the data indicated a slower
decay than a Gaussian distribution. Considering the fact that
the distribution of the number of users among organizations
cannot be so widely spread, the distribution of the traffic
demand of a user has a high probability to follow a lognormal
distribution.

Our result of the outgoing/incoming ratio of traffic vol-
umes resembles the traffic usage of light users in residential
broadband networks described in Ref. [3]; A light user uses
fewer peer-to-peer applications, and most usages are web
browsing. In our dataset, although we were not able to obtain
the traffic breakdown, the network links are for commodity
traffic (i.e., no big science traffic), and the network operators
in an organization filter out peer-to-peer traffic by manual.
These are likely a reason why our result was consistent with
that for light-users. As Ref.[3] concluded that there is no clear
boundary between light user and heavy-hitter, the distribution
of traffic demand may change its parameters (i.e., mean and
variance) as a result of the appearance of new applications.

1Of course, if an increasing volume in the additive growth is assumed
to be much larger than the current volume, the shape of the distribution
would largely change. However, we have no evidence of such traffic evolution,
currently.



We finally introduced a reproduction model of the observed
behavior based on the multiplicative growth. Although the
model itself is simple, the simulation result explained the
actual distribution very well. Sustaining multiplicative growth
might be a strong assumption for the future Internet en-
vironment. However, even though the network growth will
saturate in the future, the distribution of the traffic demand
is still likely to be closer to a lognormal distribution than a
normal distribution, because (1) there already has been enough
iterations which stand for the multiplicative assumption and
(2) once the distribution of the traffic is spread over the
several orders of magnitude, it is not easy to smooth out.
Similarly, a multiplicative growth model is used for explaining
the evolution of the network topology [20]. In this sense, the
multiplicative growth might be a key function to characterize
basic network properties.

In this paper, we clarified a basic property of the distribution
of traffic demand, as a first step. However, there are many
unsolved problems. One of them is to quantify the relationship
between source and sink nodes. Our SNMP-based analysis
cannot be directly applied to this problem. A deeper traffic
breakdown is required to understand the traffic behavior. For
each node, the network usage should be clarified in terms
of applications, and we will analyze this by using a packet
capture data passing through our backbone link. Also, the
traffic matrix estimation is likely to be a useful approach to
quantify the source and sink relationship from a more coarse-
grained viewpoint. Next, we should quantify the relationship
between the relative position of the network and the traffic
demand. For this, we can use node specific information such
as degree and clustering coefficient. This information is useful
in locating the traffic demand in the network. The last question
is the applicability of our results. Our result is likely consistent
with one for an inner-AS network, although we would need
to do a comparison of other networks to say for certain.
Moreover, we currently have no evidence that our result
applies to an inter-AS network. It is impossible to collect
the traffic demand from many ASes by using our approach.
Thus, we should use a sophisticated method like traffic matrix
estimation [11], [21], [8] to estimate the traffic demand from
other measurement points.
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