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Abstract— In this paper, we investigate temporal and spatial
correlations of time series of unwanted traffic (i.e., darknet or
network telescope traffic) in order to estimate statistical behavior
of unwanted activities from a small size of darknet address block.
First, from the analysis of long-range dependency, we point out
that TCP time series has a weak temporal correlation though
UDP time series without huge flooding is well-modeled using a
Poisson process. Next, we analyze the spatial correlation between
two traffic time series divided by different sized darknet address
blocks. We confirm that a TCP SYN traffic time series (e.g,
virus or worm) has a clear spatial correlation in the arrival of
packets between two neighboring address blocks. Indeed, this
spatial correlation remains in traffic time series 1,000 addresses
far from the target time series, even if a darknet address block
is small (e.g., /26). On the other hand, TCP SYNACK traffic
(e.g., backscatter) and UDP traffic (e.g., virus or worm) have less
spatial correlation between two adjacent large address blocks.
Finally, we estimate the average propagation delay of global
unwanted activities appearing in TCP SYN traffic by using the
generalized inter-correlation coefficient.

I. INTRODUCTION

Nowadays, the Internet is one of the essential communica-
tion infrastructures for our daily life. However, compared to
the old Internet, when only researchers accessed it, the current
Internet requires much more attention to security issues. The
detection and countervailing of Internet traffic anomalies (e.g.,
worms, virus, DDoS) is one of the hot topics in network
research [2], [3], [7]–[9], [13], [16].

Currently, there are two types of approaches for detecting
and characterizing traffic anomalies; active and passive meth-
ods. A well-known active approach is a honeypot/honeynet
[15], which is a host that emulates a vulnerable operating
system by using a virtualization technique. A honeypot host
responds to a malicious activity so as to collecting a typical
traffic pattern of such activities. The other approach uses a
darknet (network telescope, internet motion sensor) [1], [8]–
[10]; A darknet is a kind of blackhole of unwanted packets,
and the corresponding hosts for that block do not actually exist
although the address block for the darknet is advertised by a
common routing protocol (i.e., BGP). Thus, the monitoring
host easily obtains and identifies such unwanted packets that
are mainly generated by software (e.g., scanners, worms, or
viruses), backscatter, or misconfigured hosts.

However, there are two issues in the current passive ap-
proach of collecting unwanted packets for deploying to the

current and future Internet. One is the limitation of IPv4
address blocks. Usually, in order to obtain the unwanted traffic
accurately, one has to prepare a large address block (e.g., /8,
/16). As recent arguments on the depletion of IPv4 addresses
suggest [5], however, it will be more difficult to use such a
large address block for monitoring in the future. The second
issue is a scalability. All incoming packets to the darknet
are only for initialization of connection or backscattered,
because the monitoring host never responses to any incoming
packets in the passive approach. However, the daily volume
of unwanted packets without payload is a few giga-bytes for
/18 sized darknet.

Thus, we need a sophisticated method for estimating un-
wanted traffic behaviors by observing only small address
blocks (in which the number of incoming packets are rela-
tively small). In this paper, we discuss temporal and spatial
dependencies of the time series of unwanted traffic. In other
words, the predictability of course-grained unwanted activities
from smaller darknet address blocks is of our main interest.

II. DATASET

The dataset we analyzed in this paper was pcap packet
traces captured at a darknet consisting of a consecutive /18-
sided address block (16, 384 addresses) from Oct. 2006 to
May 2007. The mean and standard deviation of the number
of packets in the dataset for one day is shown in Table I.

TABLE I
MEAN AND STANDARD DEVIATION OF PACKET ARRIVAL [PACKETS/DAY]

mean standard deviation
TCP SYN 604K 312K

TCP SYNACK 97K 100K
UDP 599K 391K

We focused on three types of time series of unwanted
traffic reported by Ref. [10]. (1) TCP SYN: a time series was
conformed by TCP packets only with a SYN flag represent-
ing the new connection requests. These packets are mainly
generated by a network/port scanner, flooding, a virus, or
a worm. (2) TCP SYNACK; The packets in this category
have both SYN and ACK flags in the TCP header, and are
known as backscatter (or background radiation) of (D)DoS
victim, which is caused by an original packet with a spoofed



source IP address. (3) UDP; Most of such packets are due to
flooding, viruses, or worms. The main purpose of this study is
to better understand the macroscopic behavior of unwanted
traffic. Thus, we did not analyze a TCP/UDP time series
categorized by the destination port number in order to avoid
the explosion of the calculation cost, though such time series
might be more informative. Also, we omitted ICMP packets
since we found that those from other ASes were filtered at the
border routers in the measurement AS.

Figure 1 indicates the fluctuation in the number of unwanted
packets that arrived at our darknet address block (bin size:
1day). We can confirm that the fluctuations for the three
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Fig. 1. Number of unwanted packets to darknet (size: /18)

categories are highly variable, but not correlated with each
other.

III. ANALYSIS RESULTS

A. Temporal correlation of unwanted traffic time series

First, we focused on pieces of fixed-sized darknet IP address
blocks (size: /k block) split from one large size darknet
address block (size: /18). Thus, there were n sub address
blocks (0, 1, · · · , n − 1) with size /k. For each address block,
we reconstructed a time series of unwanted traffic for two
protocols (i.e., TCP and UDP) whose bin size was 1 min.

In order to characterize the temporal correlation of a traffic
trace, we analyzed the long-range dependency (i.e., self-
similarity) of each unwanted traffic time series per sub darknet
address block. We evaluated the unwanted traffic time series
by using the detrended fluctuation analysis (DFA) method [4],
[12], though there are many methods for estimating the long-
range dependency (LRD) of a given time series [11]. The
DFA method of characterizing a nonstationary time series is
based on the root mean square analysis of a random walk. An
advantage of using the DFA method is that it produces results
that are independent of the effect of the trend.

A detailed description of the DFA method is discussed by
Ref [12], but here we will only briefly explain the method.
We first integrate the time series, then divide it into “boxes”
of length n. In each box, we calculate the least-squares
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Fig. 2. Estimation of scaling exponent

polynominal fit of order p to the integrated signal (we used
p = 1 in this study). Finally, in each box, we calculate the
root-mean-square deviations of the integrated signal from the
polynominal fit. We repeat the above procedure for different
size boxes. For a LRD time series, we find the power law
relation

F (n) ∼ nα, (1)

between the average magnitude of the root-mean-square devi-
ations F (n) and the size of boxes n.

The value of exponent α in Eq.(1) is the parameter that
quantifies the statistical property of the time series; α = 0.5
corresponds to the white noise, meaning that bursts in the time
series do not correlate with each other. For 0.5 < α ≤ 1.0, a
burst in the time series is positively correlated in time, i.e. if
one observes a burst, there is a high probability of observing
similar sized bursts in the following time steps. Thus, current
and future behavior depends on past events. On the other
hand, 0 < α < 0.5 means that the time series has a negative
correlation, indicating that a larger value will yield a smaller
value, and vice versa. Importantly, α is closely related to the
exponent of the power law β appeared in the power spectrum
analysis; β = 2α − 1, i.e., the Hurst parameter in an LRD
time series directly corresponds to α.

Figure 2 indicates the estimation of the scaling exponent
(α) of the power-law distribution for each /24 address block.
For TCP traffic time series (upper figure), the exponents are



scattered around 0.6-0.7, though they are clearly above 0.5;
the traffic time series has a weak positive correlation. These
exponent values for unwanted traffic, however, are smaller
than those appeared in ordinary traffic time series (0.8-1.0) as
reported by Ref. [11]. In our TCP traffic trace, most traffic
volume was composed of connection initialization packets
with a TCP SYN flag. Because the connection arrival time
of general TCP flows are followed by exponential decay (i.e.,
short-range dependency), the smaller values of the scaling
exponent we observed likely resemble those appeared in the
connection arrival distribution. A plausible explanation of the
weak positive correlation above 0.5 may be due to the retry
of the TCP connection initialization [14].

On the other hand, for UDP traffic time series, the most
values of estimated exponents were approximately 0.5, mean-
ing that the traffic fluctuation also exhibits short-range depen-
dency, and is close to white noise. One outlier whose exponent
was 1.4 indicates clear non-stationarity, and we verified from
manual inspection that this traffic trace contained a UDP
flooding attack.

From both of these results, we concluded that the unwanted
traffic time series has less temporal correlation, and it is not
affected by a past unwanted activity. In addition, they imply
the difficulty in temporal prediction of the anomalous activities
from a time series observed at a single point.

B. Spatial correlation among IP address blocks

Next, we focused on the spatial correlation of time series
among sub darknet address blocks. The purpose of analyzing
the spatial correlation was to obtain knowledge on whether we
can estimate the statistical behavior of unwanted traffic spread
in the wider IP address block from a narrower darknet address
block.

In order to characterize the correlation between two un-
wanted traffic time series, we calculated the correlation coef-
ficient [6]. For given two time series (T`(t) and Tm(t)), the
correlation coefficient C(T`, Tm) is defined as

C(T`, Tm) =
∑

(T`(ti) − E[T`(t)])(Tm(ti) − E[Tm(t)])√
V [T`(t)]

√
V [Tm(t)]

,

(2)
where E[·] and V [·] are the mean value and the variance of the
time series, respectively. C(T`, Tm) characterizes the degree of
similarity in the two time series as follows. C = 0.0 indicates
that two time series are non-correlated. 0.0 < C ≤ 1.0
corresponds to a positive correlation, showing that both time
series statistically resemble each other; by definition, C = 1.0
for T`(ti) = Tm(ti). Moreover, −1.0 ≤ C < 0 indicates an
anti-correlation, i.e., T`(ti) takes a smaller value for larger
Tm(ti), and vice versa.

Figure 3 displays the spatial correlation coefficient between
two unwanted traffic time series for varying the size of
sub darknet address block (k = 23, 24, 25, 26, 27). The x-
axis represents the distance between two sub darknet address
blocks denoted by the number of addresses. For example, the
distance of 1, 024 addresses means that two sub darknet blocks

are separate from 4 blocks in /24, or 8 blocks in /25. For TCP
SYN packets (Fig3 (a)), we can confirm that the values of
the correlation coefficient are larger than 0.4 for ≈ 1, 024
addresses, though a smaller address block result indicates a
smaller value of the correlation. As for the largest value of
the correlation, the value for /23 block (512 addresses) was
around 0.6 at 1, 024 addresses. However, even for smaller
address block (e.g., /27 block (32 addresses)), the correlation
stayed around 0.4. Consequently, this result indicates that the
shorter range of address blocks is still useful for estimating the
statistical behavior of unwanted traffic for neighboring address
blocks that are relatively far from the observed block.

On the other hand, for TCP SYNACK packets (Fig3(b)), the
value of the correlation rapidly decreased even for the adjacent
sub darknet address block. This means that we cannot expect
any similarity of time series between adjacent address blocks.
This was expected because these packets are mainly due to
the backscatter of the DoS attack whose original packet had a
spoofed source address.

Also, the results of UDP packets (Fig3(c)) were charac-
terized by different behavior than the TCP SYN results. We
again confirmed rapid decay of the correlation independent
of the difference in the darknet sub address block size. The
value of the correlation stayed around 0.25 at 1, 024 addresses,
meaning that the arrival of UDP packets at an address block
has less similarity to those at adjacent address blocks.

C. Estimation of average propagation delay of unwanted
packets

In the previous subsection, we implicitly assumed that
incoming relatedpackets from an unwanted activity to the
wider darknet address block occurs within the bin size (1
min.). In other words, a scanning activity to a large number of
hosts finishes within the bin size. However, if certain software
(i.e., scanner, virus or worm) probe to a wider address range
more slowly, the value of the correlation given in Eq.(2) cannot
capture such behavior. Thus, we extend Eq.(2) to calculate the
correlation between two time series with delay τ ,

C(T`, Tm(τ)) =
∑

(T`(ti) − E[T`(t)])(Tm(ti + τ) − E[Tm(t)])√
V [T`(t)]

√
V [Tm(t)]

.

(3)
Equation (3) is known as the generalized inter-correlation coef-
ficient [6]. We obtained the maximum value of C(T`, Tm(τ))
for −3 ≤ τ ≤ 3. Such τ with maximum C corresponds to
the average (or most significant) propagation delay between
neighboring address blocks.

Figure 4 represents the estimated average propagation de-
lays for two time series. TCP SYN (Fig.4 (a)) indicates step-
wise plots per 1 min. delay, because the bin size of the
time series was set to 1 min. However, it is clear that the
procedure detects the significant delay of the two time series
in minutes. From the plots, the average propagation delay of
TCP SYN traffic time series was estimated as about 4, 500
addresses/min for 8 months. More interestingly, we could
not observe distinguishable dependency of the size of sub
darknet address blocks. Thus, in order to estimate the average



1 10 100 1000 10000
Distance (number of addresses)

0

0.2

0.4

0.6

0.8

1
C

or
re

la
tio

n

/23
/24
/25
/26
/27

(a) TCP SYN

1 10 100 1000 10000
Distance (number of addresses)

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

/23
/24
/25
/26
/27

(b) TCP SYNACK

1 10 100 1000 10000
Distance (number of addresses)

0

0.2

0.4

0.6

0.8

1

C
or

re
la

tio
n

/23
/24
/25
/26
/27

(c) UDP

Fig. 3. Spatial correlation among sub darknet address blocks
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Fig. 4. Estimation of propagation delay

propagation delay of unwanted traffic time series, we only
need small size of darknet address blocks (e.g, /26) in the
current environment.

On other hand, for TCP SYNACK and UDP time series,
there were no clear average propagation delays during the eight
months of observation as shown in Figs.4 (b) and (c). Thus,
those time series have no spatial correlation with adjacent time
series, even considering the existence of the propagation delay.
Consequently, we emphasize that the statistical behavior of
TCP SYN traffic time series is intrinsic, which is contrary to
that of the other time series.

D. Probability of the co-appearance of the same source IP
address

Finally, we focused on how often the same source IP address
appears in both neighboring sub darknet address blocks. We
calculated the probability of the co-appearance of the same
source IP address between two traffic traces of adjacent /24
address blocks. The bin size of the traffic trace was set to
1 hour. For each 1-hour data trace, the probability of co-
appearance is given as follows;

p =
1

n − 1

n−2∑
i=0

|Ai ∩ Ai+1|
|Ai|

, (4)

where Ai is a set of unique source IP addresses in the i-th
sub darknet block.

As shown in Table II, for TCP SYN traces, the probability
of the co-appearance was smaller than the other two types of
traces. In the TCP SYN traces, there are a huge number of
unique IP addresses, however, the number of packets from

TABLE II
AVERAGE PROBABILITY OF THE APPEARANCE OF THE SAME SOURCE IP

ADDRESS IN ADJACENT /24 DARKNET BLOCK (BIN SIZE 1 HOUR)

.
TCP SYN TCP SYNACK UDP

0.20 0.75 0.63

most IP addresses was only one or two. This is why the
probability is relatively low. Moreover, by manual inspection,
we confirmed that a few source IP addresses commonly
appeared in the TCP SYN traces are source of many packets
(i.e., port/address scan) to the darknet address block.

On the other hand, in the UDP traces, the probability of the
appearance remained high, though the total number of packets
arriving to the darknet was large. This is likely caused by the
random probing mechanism for finding a target host.

IV. CONCLUDING REMARKS

In this paper, we discussed the temporal and spatial cor-
relations among piecewise unwanted traffic time series to
determine whether we can estimate statistical properties of
global unwanted traffic behavior from smaller darknet address
blocks.

We first showed that each unwanted time series split into
sub darknet address blocks is characterized by a weak positive
correlation for TCP packets, and no correlation for UDP pack-
ets from the DFA method. Thus, the fluctuation of unwanted
traffic is close to random, compared to normal traffic. These
results imply that it is statistically difficult to estimate the
amount of current unwanted traffic from the traffic obtained



in the past measurement.
Next, we pointed out that the TCP SYN traffic time series

(e.g., virus or worm) has strong spatial correlation between
neighboring observed sub darknet address blocks. This de-
pendency decreases when the observed address block is far
away from the target address block to be estimated. We have
obtained that even a /26 address block (32 addresses) is enough
to estimate the statistical behavior of address blocks far from
about 1, 024 addresses. Thus, for TCP SYN behavior, we do
not need to prepare a large address block for capturing the
current dynamics of unwanted traffic. Moreover, we found that
we can estimate the average propagation delay for significant
activity of TCP SYN packet behavior by using a simple
statistical method. We obtained the average propagation delay
of 4500 addresses/min for eight months. This delay is much
slower than the spread speed of outbreak of virus [13], so
we should interpret this as the propagation delay of global
unwanted activities. This estimated delay is a likely enough
time scale for a network operator to manually write a new filter
rule for border routers in order to filter out such unwanted
traffic, after a report from another operator who manages a
network with a lower address block in a 32-bit address space.

On the other hand, for TCP SYNACK (e.g., backscatter)
and UDP (virus or worm) traffic time series, we confirmed that
there is less correlation even between large adjacent neighbor-
ing sub address blocks (/23). Also, we could not estimate the
average propagation delay of these packet behaviors, which is
clearly different from the result of TCP SYN. Of course, the
traffic generation mechanism for TCP SYNACK completely
differs from the others, because of the background radiation
of a (D)DoS attack. Consequently, the packet arrival for TCP
SYNACK is likely well-modeled by a Poisson process in a
wider range of the observed darknet address block.

Moreover, there are some arguments for UDP traffic. We
expected that the basic behavior of UDP unwanted traffic
resembles that of TCP SYN traffic, because we believe that the
basic mechanism of a scanner, virus or worm is the same in
both TCP and UDP. In reality, however, our findings showed
that we should distinguish both of them; TCP SYN traffic still
has some statistical structure in the coarse-grained time series,
though UDP traffic has no temporal or spatial correlation at
all.

We understand that our results are preliminary, and there
are more points to be clarified. The main issue to be solved is
to characterize a typical time scale to estimate the correlation
structure from a given time series. In particular, the estimation
of the average propagation delay strongly depends on the
bin size and duration of the time series. We have obtained
experimental results from weekly level time series, in which
we estimated different (both faster and slower) average propa-
gation delays in some cases, though there were no correlation
structures in other cases. Moreover, currently we obtained
only the propagation delay from a lower address in a 32-
bit address space to a higher address. However, generally
we cannot assume that the propagation delay will always be
positive (i.e., lower to higher) in the future. Also, in order to

accurately estimate the propagation delay, the bin size must
be short, though there is a minimal bin size for statistical
calculation. Thus, we need to carefully investigate further to
determine the propagation delay, particularly for the time scale
issue. Moreover, we need a more sophisticated classification
for the UDP unwanted traffic. Clearly, one alternative is to
use the information of the UDP destination port number,
corresponding to the typical behavior of a worm or virus.
It is likely a trade off problem between processing time and
accuracy of identification.
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