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Abstract— In order to characterize the dynamics of self-similar
behavior in daily Internet traffic, we analyze the time series of
traffic volume for 24-hour period in wide-area Internet, by using
detrended fluctuation analysis (DFA)—a well-known method of
characterizing nonstationarity in a time series. We show that the
estimated scaling exponent (which is directly related to the Hurst
parameter) of traffic fluctuations has a dependency on the level
of human activity for a time scale greater than 30s. Thus, the
temporal correlation for traffic fluctuations is close to 1/f -noise
during the day, and becomes weaker at night. This result suggests
that Internet traffic cannot be modeled using the unique value
of the Hurst parameter.

I. INTRODUCTION

Recent analyses of Internet traffic have shown that traffic
volume fluctuations in wide-area and local-area networks are
characterized by self-similarity, or long-range dependency [1]–
[3]. Self-similarity is a scale invariant property under time-
scale translation, i.e. it yields the existence of clustering and
bursty characteristics in the flow over wide time scales. Thus,
self-similar traffic causes larger queueing delays than the
estimation by Poissonian traffic [4], [5].

Theoretically, self-similar time series is characterized by a
power law type power spectrum density

S(f) ∝ f−β . (1)

To quantify the self-similarity, the Hurst parameter, H = β+1
2 ,

is frequently used; For positive temporal correlation of a self-
similar time series, 0.5 < H < 1.0, while in a temporally
uncorrelated time series, H = 0.5. When H = 1.0, the
time series produces 1/f noise. Many analyses of Internet
traffic have reported that H is broadly distributed around
0.6 < H ≤ 1.0 for several measurement points, indicating
that traffic fluctuations have a long range correlation in time.
Thus, self-similarity and long range correlation would appear
to be intrinsic properties in Internet traffic. However, the value
of the scaling parameter H depends on the environment of
the measurement points. From the perspective of statistical
physics, traffic behavior can be viewed as phase transition
phenomena between non-congested and congested phases [6],
and phase transition analysis shows that traffic fluctuations
become 1/f -noise (i.e., H = 1.0) at the critical point between
the two phases [6]. Moreover, away from this critical point, the
temporal correlation becomes weaker, and traffic fluctuations
are close to white noise. Namely, the phase transition view

includes self-similar and non-self-similar states. However, we
do not fully understand the temporal dynamics of the corre-
lation during the day; In other words, how does the scaling
parameter fluctuate during 24 hours?

In this paper, we focus on the temporal dynamics of this
scaling parameter during a 24-hour period in order to char-
acterize daily traffic dynamics. Using detrended fluctuation
analysis (DFA) [7], we analyze two wide-area Internet traffic
datasets. DFA is a method widely used to characterize a
nonstationary 1 time series and it can estimate the scaling
parameter more accurately than such traditional methods as
power-spectrum analysis and R/S analysis [7], [8]. Our DFA
results reveal that the value of the scaling exponent (which is
directly related to the Hurst parameter) of traffic fluctuations
depends on the level of human activity for a time scale longer
than 30s, although Internet traffic fluctuations have a positive
temporal correlation during a 24-hour period. Thus, the traffic
fluctuations are approximately 1/f -noise during the day, while
the correlation is low at night.

II. METHOD AND DATASETS

A. Detrended Fluctuation Analysis

The DFA method of characterizing a nonstationary time
series is based on the root mean square analysis of a random
walk [7]. DFA is better for this task than power spectrum
analysis or R/S analyses because it produces results that are
independent of the effect of the trend, i.e., DFA screens out
spurious self-similarity [8]. For this reason, DFA is widely
used in analyzing real-world time series (e.g. physiology, and
econophysics) [9], [10].

To use the DFA method, we (also, see Fig. 1):

1) integrate the time series;
2) divide the time series into “boxes” of length n;
3) in each box, perform a least-squares polynomial fit of

order p to the integrated signal;
4) in each box, calculate the root-mean-square deviations

of the integrated signal from the polynomial fit, corre-
sponding to the elimination of the local trend; and

5) repeat this procedure for different box sizes (i.e., time
scales) n.

1Here, stationarity means that the mean and variance of a time series does
not change under time translation.
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Fig. 1. Schematic representation of detrended fluctuation analysis (DFA),
which is a method of characterizing a nonstationary time series based on the
root-mean-square method. y(k) is a value obtained by integrating the original
time series for the time k (black curve). Gray lines indicate the polynomial
fit (p = 1) in a box (n = 100). F (n) is calculated by the root-mean-square
of deviation between y(k) and the polynomial fit. For a self-similar time
series, we observe a power law in Eq. (2) between F (n) and n. The value
of exponent α of the power law in the the DFA result is directly related to
the value of the power law in the power spectrum density; β = 2α − 1. An
advantage of the DFA is that it is independent of the number of points in the
data set. Also, the power spectrum density tends to be affected by trends.

For a self-similar time series, we find a power law relation

F (n) ∼ nα (2)

between the average magnitude of deviated fluctuations F (n)
and the size of boxes n.

Scaling exponent α is related to the exponent of the power
law in power spectrum density with

β = 2α − 1. (3)

For 0 < α < 0.5, the time series is anti-correlated, while for
α > 0.5, the time series has a temporal positive correlation
[11]. In particular, α = 0.5, α = 1.0, and α = 1.5 correspond
to white noise, 1/f -noise, and Brownian motion, respectively.
From Eq.(3), the scaling exponent corresponds to the Hurst
parameter, H = α for 0.5 ≤ α ≤ 1.0.

B. Datasets

We analyzed the two wide-area Internet traffic datasets
shown in Table 1. Both measurement points are the entrance
between the organization and the Internet. A raw traffic data
volume consists of the header part of the packet and the time
stamp when the packet is captured. From a raw data volume,
we reconstructed the time series for the number of bytes of
the data packet passing through the link from the Internet to
the organization with 0.1s bin.

Figure 2 displays an example of traffic fluctuations, which is
captured at the link between NTT laboratories and the Internet.
These were from (a) 13:00–14:00 (day) and (b) 05:00–06:00
(night). It is visually apparent that both fluctuations are char-
acterized by nonstationarity, and that daytime traffic behavior
largely differs from that at night. The mean traffic flow density
is 80 KB during the day, and 1.5 KB at night. Also, the mean
number of the existing connections for 0.1 s is ≈ 600 during
the day and ≈ 50 at night.

2The original data volumes are available at http://www.nlann.net/auckland
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Fig. 2. An example of Internet traffic fluctuations for 400 s of 0.1 s bin
at (a) 13:00 and (b) 05:00. Data is the number of bytes passing through the
link between the Internet and NTT Laboratories in Jun. 2001. It is visually
apparent that the fluctuations during the day are more violent than those during
the night.

III. RESULTS

Figure 3 displays the result of the DFA for two one-hour
traffic time series, indicating the difference in the time of the
day; 13:00–14:00 (day) and 05:00–06:00 (night). It is visually
apparent that both plots follow the power law decays given in
Eq. (2), but with a crossover point at n× ≈ 300, corresponding
to 30 s. For n < n×, the slopes of plots are closer at α ≈ 0.85
during day and night, meaning that the activity of users had
no likely effect on temporal correlation for a smaller time
scale. However, for n > n×, α is characterized by a different
value; αday = 1.01 and αnight = 0.66. Namely, during the
day, the traffic behavior is approximately 1/f -noise for larger
time scales. On the other hand, during the night, the traffic
behavior is still temporally correlated, but the level of the
temporal correlation is lower than that during the day. This
result suggests that in order to estimate scaling exponent α,
one should not calculate from a longer time series, because
the analysis of such long time series conceals the details on
the dynamics of the scaling exponent.

Next, in order to verify the results of DFA, we evaluate the
same traffic time series by using the power spectrum analysis
as shown in Fig. 4. The results are not so obvious in estimating
the value of the slope of the power law in Eq. (1). For f <
10−1, the value of exponent β is close to 0.9 for the 13:00
dataset. Also, β ≈ 0.0 for 05:00 dataset, meaning that the
temporal correlation during the night is quite low, and close
to white noise. The result of the power spectrum analysis also
supports our finding that the temporal correlation of traffic
fluctuations depends on the level of human activity. Our result
also indicates that DFA is a more useful method for estimating
the scaling exponent than power spectrum analysis.



TABLE I

DESCRIPTION OF MEASUREMENT POINTS.

Dataset Measurement point Bandwidth Datalink Duration
NTT NTT laboratories (Tokyo) 11Mbps ATM Jul. 2001 (168 hours)

Auckland2 Auckland University (NZ) 5Mbps ATM Feb. 2001 (72 hours)
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Fig. 3. Results of the DFA for two one-hour traffic fluctuations at NTT. Both
plots are characterized by power laws with crossover points at n× ≈ 300,
which corresponds to 30 s. For n < n×, the slopes for 05:00 and 13:00
are close to 0.85. Thus, for the time scale below n×, temporal correlation
might be generated by the same mechanism during the night and during the
day. Also, for n > n×, scaling exponent α is above 0.5, meaning that traffic
fluctuations have a positive temporal correlation. Remarkably, α has different
values during the night and during the day. In particular, the exponent at
13:00 is close to 1.0, indicating that traffic fluctuations become 1/f -noise.
This result suggests that one should not analyze a long dataset at once, because
the analysis of such a long time series conceals details on the behavior of the
exponent.
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Fig. 4. Results of the power spectrum analysis. Original data are the same as
those for the previous DFA results. For both data, there are crossover points
at around 10−1 (= 10s). Also it is difficult to estimate the slope of the plots
correctly for f < 10−1. However, it is visually apparent that the statistical
properties of the traffic are different during day and night for long time scales
(> 10s)

Moreover, in order to investigate the dynamic changes in
the scaling exponent during a 24 hour period, we used DFA
to estimate the value of scaling exponent α for each 1-hour
time series. Figure 5 displays (a) variations in the mean traffic
flow density and (b) variations in the value of scaling exponent
α. Variations of the mean flow density indicate that the amount
of the traffic is small between 22:00-08:00, and remains high
from 10:00–18:00, corresponding to the daily working patterns
of researchers. The exponent was estimated from the result of
DFA by fitting the region for n > n×. In Fig. 5(b), α remains
smaller around 0.6–0.9 for 23:00–08:00, while α is stable at ≈
0.95 for 10:00–19:00. Approximately, traffic fluctuations are
1/f -noise for >3 Mbps. This result indicates that the temporal
correlation of traffic fluctuations are affected by the level of
the activity of the users.

For a further check, we also plotted the dynamics of the
scaling exponent for Auckland traffic dataset as shown in
Fig. 6. The absolute value of mean flow density is different
from that of the NTT dataset, but the shape of the functional
form resembles each other. Also, the scaling exponent remains
around 0.7–0.8 for 23:00–07:00 and increases (≈ 0.9) for
09:00–18:00. For >1Mbps, the value of the exponent stays
around 0.9. Though the usage of the users in a university is
different from that of the researchers, the dynamics of the
scaling exponent for the Auckland traffic dataset is consistent
with the dynamics for the NTT traffic dataset. Thus, this
dynamics of the exponent is most likely an intrinsic property
of Internet traffic.

IV. DISCUSSION

Here, we discuss a possible cause for the observed dynamics
of the statistical property from the viewpoint of the file
size, and the protocol components. Interestingly, cumulative
distribution P (s) of transfered byte size s in each connection
follows a power law form P (s) ∝ s−1.0, independent of the
time of day as shown in Fig. 7. This result is consistent with
the distribution of file sizes in a Unix file system [12]. If
the distribution for the transfered size directly dominates the
temporal correlation of traffic, the unique exponents would
be observed during day and night independent of the mea-
surement points. In particular, this effect is expected to be
clear for the case of small amounts of traffic. From our result
for n < n×, the estimated exponent becomes a unique value
independent of the difference in the time of day. For this
reason, the file size effect has a possibility to generate temporal
correlations for smaller time scale. However, our results for
longer time scales (>30 s) shows that the scaling exponent is
characterized by the different value depending on the time of
day. Thus, it is unlikely that the exponent α observed in traffic
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Fig. 5. (a) Dynamic behavior of traffic fluctuations at the link between
NTT laboratories and the Internet. It is visually apparent that the mean flow
density of traffic depends on the level of the activity by users, corresponding
to the working pattern of researchers. (b) Behavior of the estimated value of
scaling exponent α. We estimate α from the fitting of the curve of the DFA
result for n > n×. All plots are above 0.5, so that traffic fluctuations have a
positive correlation. However, we observed that the value of the exponent is
also related to the level of the activity by the users. Namely, the exponents are
close to 0.6-0.9 during 01:00-07:00, though they are close to 0.95-1.05 during
10:00-19:00. Again, the value of the exponent decreases during 19:00-24:00.

fluctuations is determined by the file size distribution.
It is plausible that the temporal correlations generated for

longer time scales are an effect of TCP [14]–[17], which is
based on the feedback control with a retransmission mecha-
nism that provides reliable communication between hosts [13].
Reference [14] showed that the retransmission mechanism is
an important factor in generating temporal correlations in traf-
fic fluctuations. Considering that retransmission events occur
when the network is congested (at least at a bottleneck link),
this effect can explain our DFA results, i.e., 1/f -behavior
during the day, and temporal correlations weakening during
night. Moreover, Refs. [16], [17] indicate that the simple feed-
back control generates 1/f -behavior at the critical flow density
between non-congested and congested phases; This is because
each host fits its transmission rate to the current network
status by using round-trip time information as the network
becomes congested. This implicit cooperative behavior among
hosts changes the statistical behavior of the network traffic:
it becomes highly correlated. Both mechanisms may have an
effect on the statistical properties of the network traffic when
the time scales are longer.
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Fig. 6. (a) Behavior of mean flow density in the Auckland dataset, and
(b) behavior of the estimated DFA exponent. The exponents converge around
0.9 during 09:00-20:00, though the exponents are broadly distributed around
0.7− 0.8 during 00:00-07:00. This result is consistent with the result for the
NTT dataset.
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Fig. 7. Cumulative distribution of transfered byte size in a TCP connection;
05:00 (night) and 14:00 (day). By using tcptrace command [18], we count
the unique transfered byte size in a successful TCP connection, in which both
SYN and FIN packets appeared. The distribution follows a power law decay
with an exponent of ≈ 1.0 for > 104, identical to that of the cumulative
distribution of file sizes in a Unix file system. Although the distribution has
a cutoff point at around 106 during the night, the values of the exponent
are both close to 1.0. Note also that the observed exponent usually deviates
from the scaling exponent α during the night. This suggests that the scaling
exponent is independent of the exponent in the transferred size.



The value of the scaling exponent for longer time scales
seems to be closely related to the mean flow density of the
traffic as shown in Figs. 5 and 6. However, although the
mean flow density of the Auckland dataset during the day
is much smaller than that of the NTT dataset, the scaling
exponent is close to 0.9–1.0 during day for both datasets.
From this result, it is hard to directly link the value of
the scaling exponent to the absolute mean flow density of
traffic fluctuations. The value of the scaling exponent probably
depends on the “degree of congestion,” which is determined
by the topological environment and the current network status
(e.g. the location of the bottleneck, the ratio of the bandwidth
usage, etc). In this sense, the phase transition view can be
useful in explaining fluctuations of the scaling exponent [6].
Reference [6] shows that the correlation length tends to diverge
at the critical traffic flow density and, at the critical point,
traffic fluctuations become 1/f -noise. Thus, we can interpret
that the traffic status during the day is close to the critical
point, and below the critical point during the night.

V. CONCLUSION

We analyzed wide-area Internet traffic to understand the
dynamics of its temporal correlation. Our analysis of each
one-hour traffic dataset revealed that the value of the estimated
scaling exponent of the DFA, which directly corresponds to
the Hurst parameter, fluctuates between 0.6 and 1.0 for a
24-hour period. In particular, we found that the temporal
correlation becomes smaller at night, while the traffic behavior
is characterized by 1/f -noise during day. Thus, our results
indicate that Internet traffic cannot be modeled using self-
similarity with the unique Hurst parameter.

ACKNOWLEDGMENT

We wish to thank T. Mori for providing NTT dataset, and
Auckland University team for providing the Auckland dataset.

REFERENCES

[1] W. E. Leland, M.S. Taqqu, W. Willinger, and D.V. Willson. “On the
Self-Similar Nature of Ethernet Traffic,” IEEE/ACM Transactions on
Networking, vol. 2, pp. 1–15, 1994.

[2] V. Paxson and S. Floyd. “Wide-Area Traffic: The Failure of Poisson
Modeling,” IEEE/ACM Transactions on Networking, vol. 3, pp. 226-
244, 1995.

[3] M. Crovella and A. Bestavros. “Self-Similarity in World Wide Web
Traffic: Evidence and Possible Causes,” IEEE/ACM Transactions on
Networking, vol. 5, pp. 835–846, 1997.

[4] I. Norros. “On the Use of Fractional Brownian Motion in the Theory
of Connectionless Networks,” IEEE Journal on Selected Areas in
Communications, vol. 13, pp. 953–962, 1995.

[5] A. Erramilli, O. Narayan, and W. Willinger. “Experimental Queueing
Analysis with Long-Range Dependent Traffic,” IEEE/ACM Transactions
on Networking, vol. 4, pp. 209–223, 1996.

[6] M. Takayasu, H. Takayasu, and K. Fukuda. “Dynamic Phase Transition
Observed in the Internet Traffic Flow,” Physica A, vol. 277, pp. 248–255,
2000.

[7] C-K. Peng, S. Havlin, H. E. Stanley, and A. L. Goldberger. “Quantifi-
cation of scaling exponents and crossover phenomena in nonstationary
heartbeat time series,” Chaos, vol. 5, pp. 82–87, 1995.

[8] K. Hu, P. Ch. Ivanov, Z. Chen, P. Carpena, and H. E. Stanley. “Effect
of trends on detrended fluctuation analysis,” Physical Review E, vol. 64,
pp. 011114, 2001.

[9] A. L. Goldberger, L. A. N. Amaral, J. M. Hausdorff, P. Ch. Ivanov, C-
K. Peng, and H. E. Stanley. “Fractal dynamics in physiology: Alterations
with disease and aging,” Proceedings of the National Academy of
Sciences USA, vol. 99 Supp. 1, pp. 2466-2472, 2002.

[10] H. Takayasu (ed.), “Empirical Science of Financial Fluctuations: The
Advent of Econophysics,” Springer-Verlag, Tokyo, 2002.

[11] M. F. Shlesinger. “Fractal time and 1/f noise in complex systems,” Ann.
NY Acad. Sci., vol. 504, pp. 214–228, 1987.

[12] G. Irlam. “Unix file size survey - 1993,” Available at
http://www.base.com/gordoni/ufs93.html, 1994.

[13] J. Postel. “Transmission Control Protocol,” RFC 793, 1981.
[14] A. Feldmann, A. C. Gilbert, P. Huang, and W. Willinger. “Dynamics of

IP Traffic: A Study of the Role of Variability and the Impact of Control,”
Proc. ACM SIGCOMM99, pp. 301-313, Cambridge, USA (1999).

[15] A. Veres, and M. Boda. “The Chaotic Nature of TCP Congestion
Control”. Proc. IEEE INFOCOM2000, pp. 1715–1723, TelAviv, Israel
(2000).

[16] K. Fukuda, M. Takayasu, and H. Takayasu. “Analysis of Minimal Model
of Internet Traffic,” Proc. Traffic and Granular Flow 2001, Springer
(2001).

[17] K. Fukuda, M. Takayasu, and H. Takayasu. “Origin of Self-Similarity in
TCP Traffic,” Proc. SPECTS 2003, pp. 18–26, Montreal, Canada (2003).

[18] S. Ostermann. “Tcptrace home page. http://irg.cs.ohiou.edu
/software/tcptrace/.”


