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ABSTRACT
This paper discusses the possibility of applying an image-
processing technique to detecting anomalies in Internet traf-
fic, which is different from traditional techniques of detect-
ing anomalies. We first demonstrate that anomalous packet
behavior in darknet traces often has a characteristic multi-
scale structure in time and space (e.g., in addresses or ports).
These observed structures consist of abnormal and non ran-
dom uses of particular traffic features. From the observa-
tions, we propose a new type of algorithm for detecting anoma-
lies based on a technique of pattern recognition. The key
idea underlying our algorithm is that anomalous activities
appear as “lines” on temporal-spatial planes, which are eas-
ily identified by an edge-detection algorithm. Also, the ap-
plication of a clustering technique to the lines obtained helps
in classifying and labeling the numerous anomalies detected.
The proposed algorithm was used to blindly analyze packet
traffic traces collected from a trans-Pacific transit link. Fur-
thermore, we compared the anomalies detected by our algo-
rithm with those found by a statistical-based algorithm. Con-
sequently, the comparison revealed that the two algorithms
found mainly the same anomalies but some were of various
different characteristic types.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Network]: Net-
work Operations—Network monitoring

General Terms
Measurement, Management, Security
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1. INTRODUCTION
The Internet has become one of the most important

social infrastructures in our daily lives. However, many
issues have simultaneously been pointed out from the
view-point of network security. Improper uses of net-
works due to failures, misconfigurations and malicious
attacks consume excessive bandwidth and deteriorate
their performance. Thus these anomalies penalize legit-
imate applications from using optimal resources. De-
tecting anomalies quickly and accurately in network
traffic is a hot topic in the current field of research
(e.g., [2, 12, 14, 4, 17, 9, 6, 10]). It is essential to
characterize network anomalies to be able to identify
them. However, because anomalies in Internet traffic
are widely diversified, it is difficult to generally char-
acterize them all, and high volume makes them harder
to identify. Several volume-based methods have been
proposed of finding anomalies by analysing time series
generated from network traffic (e.g. [2, 8]). However,
as these methods give no information on the specifici-
ties of anomalies, the characteristics of anomalies are
consequently identified by investigating dump files or
flow records, and this can be a baffling problem. Re-
cent work has considered information on network traf-
fic to accurately identify anomalous traffic. For exam-
ple, Lakhina et al. [12] emphasized the significant role
played by traffic features (e.g. addresses or port num-
bers) in detecting anomalies, and they detected anoma-
lies by analyzing the distribution of traffic features in
network flows.

In this paper we also point out abnormal distribution
of traffic features and go further by identifying non-
random distributions. We propose a new approach to
identifying anomalies in network traffic in which the
traffic is mapped on snapshots and anomalies are iden-
tified by a technique of pattern recognition. The snap-
shots are based on several traffic features to detect most
kinds of anomalies and they are computed on differ-
ent (spatial/temporal) scales. The technique of pat-
tern recognition that is implemented allows unsuper-
vised learning and no anomaly database is required. A
further advantage of pattern recognition is its ability



to capture ambiguous and short-lived anomalies. Also,
a clustering algorithm helps to label and classify the
multitude of anomalies found. The approach we pro-
pose is evaluated by comparing it with a method of de-
tection based on a non-Gaussian multi-timescale model
[4]. The derived results demonstrate that numerous
kinds of anomalies can be identified with the proposed
approach; moreover, it can detect several short-lived
and low-intensity anomalies that the statistical-based
method cannot identify.

2. RELATED WORK
Network traffic anomalies have been studied for many

years, and several supervised and unsupervised-learning
approaches have been suggested. Supervised-learning
methods have mainly been represented by intrusion de-
tection systems (IDSs) based on anomaly signatures.
However, due to the constant appearance of new anoma-
lies, unsupervised-learning approaches have also been
focused on. They were first based on volume variance,
identifying both short or long-lasting anomalies through
local or global variances in the number of bytes. Never-
theless some sophisticated low-rate attacks [11] cannot
be identified by merely analyzing the volume of traf-
fic. For example a port-scan attack does not necessarily
consume much bandwidth when it tries to access an ab-
normally large number of ports on a single host. In ad-
dition to volume, recent work has also considered traffic
features for a closer analysis of traffic; consequently, the
anomalies that have been found have been more diver-
sified.

2.1 Signature-based approaches
Currently, IDSs ([16, 15]) are the most widely tools

used to notify operators about security issues. These
applications analyze all transmitted packets and search
for sequences of bytes known to be malicious. The key
feature of IDSs is their signature database that can be
referenced to identify well-known anomalies. In addi-
tion, pattern-matching techniques allow fast processing
to identify malicious code from the payload. However,
because IDSs are based on a signature engine, novel
anomalies cannot be identified and new signatures haves
to be developed for every new attack. Signatures also
cannot be designed for sophisticated attacks, such as
self-modifying worms, and they cannot cover the mul-
titude of possible attacks created by malicious users.
IDSs can help to protect systems from attacks they have
previously experienced but they are inefficient in imme-
diately preventing new attacks.

2.2 Statistical-based approaches
The wavelet tool [1] allows a single signal to be de-

composed in several signals representing different fre-
quencies. High frequencies indicate spontaneous behav-

ior by traffic while low frequencies exhibit global be-
havior by traffic. Methods of detection involve finding
global and local variances in wavelet coefficients to de-
tect respective short and long-term anomalies. Wavelet
methods were first used on throughput signals high-
lighting anomalies particularly greedy for bandwidth.
However, several kinds of anomalies cannot be detected
if only the number of bytes is taken into consideration.
To find more diversified anomalies, Kim and Reddy [8]
proposed a data structure to generate more complex
signal as a function of packet information. As the an-
alyzed signal represents changes in few traffic features,
more kinds of anomalies can be identified. Unfortu-
nately, analysis is still based on a single signal describ-
ing the whole flow of traffic; consequently, low-intensity
anomalies have yet an insignificant impact on identify-
ing anomalies in the entire traffic flow.

Network traffic represents a complex multidimensional
object in which wavelet provides an interesting way of
breaking down time space. Despite this, another mech-
anism also has to be used to dissect the address space
to obtain a finer grained view of traffic.

Other methods based on statistical analysis have been
proposed to solve the problem of detecting anomalies
in network traffic. Unlike traditional wavelet methods,
these methods have considered traffic features to high-
light anomalies. Recent statistical-based methods have
created several random aggregated traffics (or sketches)
[4, 13] to dissect the whole flow. After this, the global
behavior of the traffic is extracted from these sketches,
and discriminating criteria based on statistical analy-
sis highlights data with abnormal characteristics. A
key feature of statistical-based methods is their accu-
rate characterization of the behavior of global traffic to
detect most anomalies. Different techniques have been
proposed. For example, Lakhina et al. [12] took advan-
tage of primary component analysis (PCA) while De-
waele et al.’s approach [4] was based on non-Gaussian
procedures, where both methods computed their anal-
yse of IP addresses and port numbers. These meth-
ods made use of a threshold on the minimum num-
ber of packets involving anomalies to avoid false pos-
itives. Indeed, statistics computed from “small” flows
are not sufficiently representative and may provide un-
expected results. Kim et al. proposed [10] a different
approach, i.e., a Bayesian statistics based DDoS algo-
rithm for detection, which calculated the likelihood of
non-legitimate packets for each arrived packet. This ap-
proach was promising, but had a disadvantage in need-
ing answer data for the learning process.

Consequently, although statistical-based analysis al-
lows us to identify a large variety of anomalies, those
involving small traffic flows or those that are defined
statistically close to global traffic behavior cannot be
identified with these methods.



2.3 Image processing-based approaches
Some image processing-based methods for detecting

network anomalies have recently been studied. For ex-
ample Kim and Reddy [9] introduced a way of sum-
marizing packets information in a picture (or frame);
thereby, many frames could be computed from network
traffic constituting a movie. A scene-change algorithm
was applied to it to highlight significant changes in net-
work traffic. The main contributions of this approach
were its short latency to detect anomalies and the use of
image-processing techniques to detect network anoma-
lies. However, as this technique still counted packets
and used threshold to determine significant changes in
network traffic, several anomalies could not be detected
with this kind of counter.

We propose a new approach to detecting anomalies
based on pattern recognition, where anomalous traffic
flows are detected through behavior-based signatures,
similar to the graphical signatures introduced by Far-
raposo et al. [6] for classifying anomalies.

3. TEMPORAL AND SPATIAL BEHAVIOR
OF ANOMALOUS TRAFFIC

Here, we focus on the temporal and spatial behavior
of anomalies appearing in two types of network traffic.
The first is traffic data called “darknet”, which only
consists of nonproductive traffic. The second is back-
bone traffic data extracted from a trans-Pacific link.

3.1 Darknet data
Figure 1 displays example scatter plots generated from

a darknet trace taken from a /18 sub-network for a pe-
riod of 24 hours in October 2006. As described by Pang
et al. [14], a darknet (or background radiation) means
nonproductive traffic sent to unused address space. Dark-
net data helps us to understand anomalous traffic and
observe graphical signatures. In the upper panel of
Fig. 1 the time is represented by the horizontal axis
and the vertical axis stands for destination addresses.
The vertical axis represents the source port number in
the lower panel. Each pixel corresponds to packets, and
the color indicates the intensity of arrival of the packets.
In the upper panel, vertical “lines” represent exploit at-
tacks or any processes using network scans (e.g. (e)).
The horizontal “lines” indicate hosts or sub networks
under heavy attack. They could be the targets of any
flood attacks or misconfigurations (e.g. (d) and (f)).

In the lower panel, we can observe other kinds of
anomalous activities, and we obtained more informa-
tion about those found in the upper scatter plot. Here,
the vertical or oblique “lines” mean any procedures us-
ing an increasing number of port sources. This is the
case with most operating systems when a process opens
as many connections as possible. In this panel, the hori-
zontal “lines” indicate constant and heavy traffics from

Figure 1: Scatter plot of darknet traffic: desti-
nation address (top) and source port (bottom)

a single port, emphasizing flooding, misconfiguration,
or heavy-hitters. We can observe two sets of consecu-
tive vertical “lines” (see (a) and (b) in Fig. 1) appearing
at the same time as a sudden heavy noise in the upper
panel. These two behaviors can be understood as a pro-
cess trying to access a maximum number of computers
in a sub-network within a short duration. This is typi-
cally an exploit or worm behavior. Checking the header
information, note that all these packets are directed to
port 445. Windows has vulnerabilities in protocols us-
ing this port. Several worms have spread exploiting
these vulnerabilities. The vertical “line” (e) behaves in
the same way, but within a shorter time. Indeed, the
packet information for (e) informs us about an exploit
on ssh. Also, we analyzed the slanted curves (see (c)
an (d) in Fig. 1) and detected attacks aimed at services
sensitive to attacks. These attacks do not appear linear
because of the variance in time processing or network
delays (due to another activity (d) has some peaks in
its source port numbers). The ports concerned are 80
for (c) and 161 for (d). These services have well known
anomalies driving in a DoS or buffer overflow. The tar-
gets in (d) are aimed at a small sub-network (see (d) in
the upper panel), whereas (c) is aimed at a single target
that can be easily identified by zooming in on (f).



3.2 Trans-Pacific traffic data

Figure 2: Trans-Pacific traffic data in multiple
time scales (2007/01/09)

The previous figure indicated the shapes of the anoma-
lies. However, as the input files we used only provided
darknet traffic, these files did not contain any legiti-
mate traffic. Now, let us present another example with
anomalies in a large and complex traffic flow. We ana-
lyzed a traffic trace from the Measurement and Analysis
on the Wide Internet (MAWI) archive [3], which is a set
of traffic traces that has been collected by the WIDE
Project since 1999 1. This archive provides large-scale
1http://mawi.wide.ad.jp/mawi/

traces taken from trans-Pacific links. The traffic traces
are in pcap form without payload data, and with both
addresses anonymized. Also, the time duration of all
traces is fifteen minutes.

Figure 2 shows graphical representations generated
from ten consecutive files of the MAWI database. The
total size of these ten files is about 7.6 GB, for a time
length of 2.5 hours and more than 22 million packets.
In the top panel, the vertical axis stands for the source
port. We easily see that the traffic is much heavier
than in the previous example. However, we can still
distinguish several red “lines” from the whole traffic
flow.

Next, we zoomed in on the right (during 9:45-10:15)
of the figure in detail. The middle panel was also drawn
regarding the source port to obtain a finer grained time
scale. The header information helps us to understand
the plotted pixels. The two oblique “lines” crossing the
figure (see (a) in Fig. 2) represent a SYN flood. This
is an attack from a single host on several targets. The
attacker floods targets on port 443 (usually used for
HTTP over SSL). This method is well known and re-
sults in buffer overflow in the Private Communications
Transport (PCT) protocol implementation in the Mi-
crosoft SSL library. The other slanted “lines” are the
same kinds of attacks against other services and from
different hosts. In particular (b) stands for a DDoS
attack against a few HTTP servers. The horizontal
red “lines” are anomalies consuming bandwidth such as
that in DoS attacks, misconfiguration or heavy-hitters
from peer-to-peer networks.

The bottom panel in Fig. 2 shows the same traffic as
in the middle panel, but regarding the destination port.
We can observe similar “lines” to those found in the
middle panel (b), and they stand for the server reactions
to the DDoS attack previously observed. Also, note two
kinds of “lines” repeated several times (see (c) and (d)).
Both of these were DoS attacks on ACK packets from
two distinct hosts against different targets.

4. PROPOSED ALGORITHM
Let us briefly review six goals and main issues in

detecting anomalies in network traffic: (1) First, it is
necessary to design an unsupervised-learning method
(i.e. where anomalies are not known a priori). We
could thereby avoid having to use signature-anomaly
databases or other methods based on well-known anoma-
lies, like most of the current IDSs are based on. The pro-
posed method would have to be able to discover new and
unknown anomalies through their unusual behaviors.
(2) In a backbone network, a huge amount of data is
constantly transmitted, meaning that all the data could
be merely handled by summarizing the information.
However, suspicious data only represent a small part of
the whole traffic flow, and the characteristics of anoma-



lies should not be lost when information on traffic is
summarized. Significant data for characterizing anoma-
lies would have to be emphasized to enable us to proceed
with accurate analysis. (3) Analyzing network traffic is
a complex task due to the number of dimensions implied
in network communications (e.g. addresses, ports, TCP
flags, ICMP types/codes). Although many abstractions
have to be done to handle such multi-dimensional ob-
jects, network traffic anomalies must still remain con-
spicuously identifiable. Furthermore, some network-
traffic dimensions stand for large spaces where no ele-
ments can be handled individually. For example, the
source and destination address space consists of 232

hosts in IPv4; therefore, a method of detection in real-
time cannot thoroughly take each host into considera-
tion individually. (4) Once an anomaly is detected in
network traffic, data involved in the event also have to
be retrieved to accurately characterize the anomaly (its
origin, target, and period of time). (5) Further, anoma-
lies in network traffic are particularly diversified; among
other phenomena their duration and number of targets
are extremely varied. For example, DoS attacks are
characterized by a flash flood to a single host whereas an
exploit attack tries to connect to a large range of hosts
for an undetermined period of time. It is generally dif-
ficult to characterize anomalies in network traffic and
similarities among anomalies have to be well defined.
(6) Finally, methods involving low computational costs
are required and anomalies have to be identified early
before they spread.

4.1 Main idea

Figure 3: Same anomaly at different scales

We propose a new approach to detecting anomalies

in network traffic using a technique of pattern recog-
nition in images similar to the ones presented in Sec-
tion 3. To provide an unsupervised-learning method,
we have to consider a generic pattern allowing all kinds
of anomalies to be detected in analyzed snapshots. Al-
though the anomalous traffics discussed in Section 3
are represented by different shapes, appropriate scales
allow all anomalies to be shown as (solid or dotted)
“lines”. For example, Fig. 3 represents an anomaly
on different scales. The time scale is small in the left
panel. The anomaly is not entirely displayed, and only
the local behavior of the anomaly is provided. How-
ever a large time scale allows us to draw the “line” of
the right panel where the whole anomaly is represented,
and the global behavior of the anomaly is presented. In
both cases these “lines” represent an abnormal distri-
bution of traffic features where dispersed distributions
are depicted as vertical “lines” and concentrated distri-
butions are represented by horizontal “lines”. For ex-
ample, a network scan is represented as a vertical line
in an image where the vertical axis stands for the des-
tination address and the horizontal axis represents the
time. Due to the wide variety of anomalies, we have no
knowledge of the number or nature of traffic features
abnormally distributed in these anomalies. In this pa-
per, we discuss our analysis of only two dimensional
images highlighting one traffic feature; consequently, an
anomaly may appear in different images but always as
a “line”. Combining more dimensions into an image re-
sults in detecting anomalies with higher computational
complexity and, paradoxically, more graphical represen-
tations have to be considered (to detect all classes of
anomalies). For example, we can identify anomalies re-
garding four traffic features; in 3-dimensional represen-
tations (two traffic features and the time) there is six
possible ways of plotting network traffic, whereas with
2-dimensional representations (a traffic feature and the
time) there are only four possibilities.

The main idea underlying the new method is to find,
lines representing unusual and excessive use of a traf-
fic feature from different snapshots. Thus, the proposed
technique focuses on the nature of the traffic (traffic fea-
tures) instead of the volume (number of bytes). This
paper has taken into consideration four traffic features
(source/destination addresses and ports) to detect anoma-
lies; however, the method can easily be applied to other
traffic features. The detected lines correspond to an
important or a negligible number of packets. Conse-
quently, our method takes advantage of this asset and
permits us to detect anomalies involving a small amount
of data and/or a small number of packets. Since our
method of detection is based on unusual traffic behav-
iors and it does not require an anomaly database, it is
able to detect new and unknown anomalies.

The new method consists of six steps: (1) Initially



adjust a sliding window to the beginning of the data.
(2) Compute multi-scale snapshots for each traffic fea-
ture to be considered. (3) Identify lines in the snap-
shots. (4) Retrieve data on network traffic involved in
the lines found and summarize these in an “event”. (5)
“Events” from the same source or aimed at the same
destination are grouped together to form “anomalies”.
(6) Shift the sliding window and repeat steps 2 to 5.
A clustering technique classifies anomalies found fol-
lowing their distribution of traffic features to provide
understandable output.

4.2 Computation of multi-scale snapshots

4.2.1 Spatial direction
We focused on four traffic features for detecting anoma-

lies; thus, four graphical representations were used to
compute the snapshots. To reduce noise in network
traffic surrounding the anomalies and to facilitate their
identification in the analyzed images, we split the entire
network traffic into smaller sub-traffics. Indeed, if the
whole network traffic could be analyzed at once, then
anomalies appearing simultaneously would overlap one
another and generate confusing images. We propose
two general ways of dividing the entire traffic. On the
one hand, the whole traffic is classified in N sub-traffics
corresponding to data sent from N disjointed blocks of
source addresses. On the other hand, the traffic is ar-
ranged in N sub-traffics standing for data received by
N separated blocks of destination addresses. There-
fore, 2 ∗ N sub-traffics are formed, and a snapshot is
computed after this for each sub-traffic and each graphi-
cal representation (considered for detecting anomalies).
Here, we have considered four graphical representations
(from four traffic features), consequently 2∗N ∗4 snap-
shots are processed for detecting anomalies in network
traffic. This process helps us to generate images em-
phasizing different kinds of anomalies and avoids noise
in network traffic. For example, Fig. 4 summarizes the
process for generating images from network-traffic data
from five communications between three blocks of ad-
dresses (N = 3). In this example, a network scan on
the entire network can be outlined in the left lower set
of images (labelled 3, 4, and 5); also, a DDoS attack
from hosts over the whole network can be highlighted
in the right upper set of images (labelled 1, 2, and 3).

4.2.2 Time direction
Like most methods of detection, the proposed ap-

proach browses network-traffic data by using a slid-
ing window. A common issue is to define an optimal
window size to detect a sufficient number of anomalies
within a short time. With traditional methods of de-
tection, a small window is preferred to rapidly detect
anomalies; however, only short-term anomalies can be

Figure 4: Image generation

identified. The advantage of our method is that we use
a small window to quickly detect short and long-term
anomalies. Indeed, our method only detects lines, and
we do not need to display the whole segment represent-
ing the anomaly; a sub-segment is sufficient to identify
it. For example, Fig. 3 shows an anomaly on different
temporal and spatial scales. In the left panel, the time
scale is very short; therefore, the anomaly is not com-
pletely displayed but can still be identified. We thus
took advantage of a short time scale to detect short
and long-term anomalies as quickly as possible.

4.3 Detection : Hough transform

Original coordinate plane Hough space

Figure 5: Hough transform with three points

The basic tool we employed to find lines in snapshots
was the Hough transform [7, 5]. Its two main advan-
tages are: (1) It is able to detect solid lines as well as
lines with missing parts (e.g. dotted lines). This asset
is important for our purpose since anomalies do not al-
ways constantly generate traffic. (2) Furthermore, it is
robust against noise, and images generated from traces
contain noise due to legitimate traffic.

Let us review some details of this well-known tech-
nique used in pattern recognition. The Hough trans-
form consists of a voting procedure with an equation
characterizing a shape. For each plotted point, a vote is
done for all possible shapes passing through this point.
All votes are recorded in a parameter space called an ac-
cumulator (or Hough space). Finally, shapes are found
by identifying non-local maximum values from the Hough



space where the coordinates are the parameters values
for identified shapes. In the particular case of lines, we
use polar coordinates to define a line: ρ = x · cos θ +
y · sin θ. For each plotted point (x1, y1), votes are done
for all θ and ρ solving the following equation: ρ(θ) =
x1 · cos θ + y1 · sin θ. These votes stand for all lines
passing through (x1, y1). Once all votes are done for all
points plotted in the image, lines are found by identi-
fying maximum values in the accumulator, where the
coordinates are values of parameters (ρ and θ) for the
line equation.

For example, in Fig. 5 the left graph plots three points
in the line; the use of the Hough transform in this graph
provides the line passing through these three points.
The right graph in Fig. 5 plots the Hough space stand-
ing for the votes of all points; each curve represents all
votes made for a single point. The intersection of the
three scatter plots gives parameters values (ρ0 and θ0)
defining the line binding the three given points.

In our approach, we took advantage of the Hough
transform to find lines (representing anomalous traffic)
in images generated from network traffic. The maxi-
mum values were extracted from the Hough space using
a relative threshold regarding the average value of the
accumulator. Figure 6 shows an example of an image
computed from darknet traffic and the corresponding
Hough space. The top panel is the original image from
network traffic; note the seven lines indicate the use of
an increasing number of source ports during a short pe-
riod of time, and there are some activities in the lower
port. The middle panel is the Hough space resulting
from the top image; there are numerous curves and
they mainly cross at eight points. The point most high-
lighted (intersection of curves) represents traffic in the
lower ports whereas around this point the seven other
points stand for the seven lines identified in the original
images. The coordinates of the highlighted intersections
determine the lines and the lower panel shows the orig-
inal image with the lines identified through the Hough
transform.

4.4 Identification
Packet-header information corresponding to lines ex-

tracted with the Hough transform should be used to
identify origins, targets, and types of detected anoma-
lies. Once a line is found, packet-header information
is retrieved from all plotted points along the identi-
fied line. Such packet information is summarized into
a set of statistics called an event, constituting a report
on a specific identified line. Indeed, an event provides
detailed information on a particular set of packets ex-
tracted from the whole traffic flow regarding its abnor-
mal behavior.

Since several lines can be drawn from a single anomaly,
several events can stand for the same anomaly. Events

Figure 6: Original darknet traffic (top), Corre-
sponding Hough space (middle), and Detected
lines (bottom)

with the same destination or source address are grouped
together to output a single notification per anomaly.
For example, assuming that the seven distinct lines from
Fig. 6 (top panel) are from the same source, only one
event will consequently result from these lines being
detected. Once events are merged and represent more
than one line, we call this an anomaly. No events stand-
ing for a single line are considered as anomalies to avoid
false positives. Anomalies are reported with correspond-
ing events information; consequently, an operator can
understand the anomaly identified and act according to
this. Seven kinds of reported information are:

• The number of lines found for this anomaly.

• The number of packets recovered for this anomaly.

• The graphical representation used to identify the
lines.

• The source and destination addresses (IP) with
corresponding percentages and timestamps of the
first and last packets retrieved for each host.

• The source and destination ports (TCP or UDP)
with corresponding percentages.

• The percentages of use for all protocols.

• The entropy for each traffic feature considered in
the clustering method (see 4.5).

4.5 Classification
Many kinds of anomalies in network traffic can be

identified with the method of detection we propose. To
sort the anomalies found and to clarify the output of



the algorithm, we classified all anomalies into several
labelled clusters. We implemented a simple method of
clustering based on the distribution of traffic features
of each anomaly that was identified. We evaluated the
distribution of traffic features with the sample entropy
introduced by Lakhina et al. [12]. This metric basically
informed us if the distribution of traffic features was
concentrated or dispersed within a given traffic flow.
Many kinds of anomalies have different distributions of
traffic features, and their types can be determined by
the distribution of features. For example, a port scan,
executed by a single host, is characterized by a concen-
trated distribution of address sources and a dispersed
distribution of port destinations.

To classify identified anomalies, we took into account
the four traffic features considered for detecting anoma-
lies; therefore anomalies were ordered in clusters fol-
lowing a four-dimensional vector. Each coordinate of
the vector was equal to 0 or 1 depending on whether
the sample entropy was lower than the average or not.
Thus, we obtained 24 different vectors, each of them
representing a particular cluster. Consequently, each
anomaly was classified regarding its vector (i.e. its dis-
tribution of traffic features) in one of the 24 clusters rep-
resenting a certain kind of anomaly. Table 1 provides
a number for each cluster and labels for corresponding
anomalies. Some clusters are not labelled meaning un-
known anomalies. Note that the cluster numbered 15 is
intended for anomalies identified with all dispersed traf-
fic features. However, these kinds of anomalies make no
sense and we deduced that this cluster corresponds to
a false positive or several anomalies overlapping.

5. EVALUATION
We run our algorithm on trans-Pacific traffic traces

in a preliminary evaluation, and compared the results
with a statistical-based algorithm [4]. Comparing the
results from the two methods revealed that the new
method is able to efficiently identify short and long-term
anomalous traffics representing many classes of anoma-
lies. The Hough transform allows to detect exploits,
worms, and (port and address) scans through horizon-
tal or slanted lines, while DoS attacks are represented
by horizontal lines in the analyzed images. Further,
the proposed approach has the ability to detect volume-
based methods through their excessive use of traffic fea-
tures. It also permits anomalies to be detected involving
a small amount of data, which cannot be detected with
other methods (due to their thresholds on the minimum
number of packets to be analyzed). Furthermore, the
detection delay2 with our approach is shorter and allows
us to rapidly warn operators. Although, our approach is
able to detect anomalies in real-time, the computation
2That is the period of time between the outbreak of anoma-
lies and their identification

Table 1: Cluster of anomalies
Anomaly Addr Addr Port Port Cluster

label Src Dest Src Dest Number
Heavy traffic,

Peer to peer traffic 0 0 0 0 0

Port scan on few host 0 0 0 1 1
Flood,

DoS attack 0 0 1 0 2
Port scan

on several host 0 0 1 1 3
Network scan,
Exploit, Worm 0 1 0 0 4

Reply to a DDoS attack,
Reply to a DoS attack from spoofed host 0 1 0 1 5

Network scan,
Exploit, Worm 0 1 1 0 6

Worm 0 1 1 1 7

DoS attack from spoofed host 1 0 0 0 8

1 0 0 1 9
Flash crowd,
DDoS attack 1 0 1 0 10

1 0 1 1 11

1 1 0 0 12

1 1 0 1 13

Worm spreading 1 1 1 0 14
Anomalies mixed,

false positive 1 1 1 1 15

time is significantly longer for the current implementa-
tion of our method than that for the statistical-based
algorithm. However, the small number of images to pro-
cess the Hough transform reduces the execution time
and memory use by the application. The number of
anomalies detected also increases with a larger number
of images (and a small address block).

5.1 Methodology
The two methods were tested on a trans-Pacific trace

trace from the MAWI project where many anomalies
have been reported using the method presented by De-
waele et al. [4]. Note that the traffic data were cap-
tured in August 2004, after the Sasser worm had be-
come widespread. A great deal of network activity has
been reported concerning this worm.

Although several parameters have to be specified for
both methods, optimal parameters have not yet been
fully evaluated for either of these two methods. To eval-
uate our method we tuned both approaches to approx-
imately find the same number of anomalies. However,
for few attacks, we figured out that the method based on
statistical analysis reported, two anomalies though our
method reported only one. Since anomalies are reported
differently by both methods, we compared the results
by checking whether anomalies found by one method
had also been detected by the other (after ensuring that
they were not false positives), and vice-versa.

5.2 Results



Figure 7: Anomalies identified both methods,
sorted by cluster numbers.

The method proposed by Dewaele et al. [4] was exe-
cuted with values of 1 for the alpha parameter and 1000
for the threshold. The method detected 630 anoma-
lies. The method we proposed was run with a window
size of 3 s and the relative threshold (for the Hough
transform) was set to 100%. For a 15 minutes trace,
the execution time for detection was about 10 minutes
on a standard desktop PC (Core2Duo 2.6 GHz, 2 Gb
of RAM). Our method identified 625 anomalies. The
identified anomalies were also classified into clusters as
shown in the histogram Fig. 7. Note that cluster num-
ber 6 contains a large number of anomalies due to the
Sasser worm. Furthermore, we deduced that cluster 15
presented confused anomalies, viz., each occurrence in
this cluster stood for a mixture of several anomalies.

5.3 Comparison
We first checked if the anomalies reported by our

algorithm had also been reported by the statistical-
based method. The method based on pattern recog-
nition identified 297 (over 625) anomalies that were not
identified by the statistical-based one. The two meth-
ods are compared in the histogram in Fig. 7; most dif-
ferences appears in clusters 0 and 6. We inspected all
anomalies not reported by either methods and noticed
that about 100 anomalies were identified in cluster 6 as
true positive anomalies related to the Sasser activity.
This revealed that the image processing-based approach
detected twice the anomalous traffic for this class of
anomaly than the statistical-based one. Several of these
anomalies could not be detected with the method pro-
posed by Dewaele et al. [4] due to the small number
of packets involved. However, anomalies classified into
cluster 0 and not identified by the statistical-based ap-
proach were mostly heavy traffic between two hosts us-
ing HTTP, HTTPS, or peer-to-peer protocols. More

Figure 8: Anomalies identified by both methods,
sorted by type of traffic.

in-depth investigations have to be done to estimate if
they are false positive anomalies.

The method proposed by Dewaele et al. [4] reported
630 anomalies classified in six groups regarding several
heuristics (Fig. 8), where 165 identified anomalies were
not detected by the pattern-recognition method pro-
posed in this paper. Of these 165 anomalies 24 were
labelled as OK meaning they were certainly not harm-
ful (i.e., mostly http traffic). Also, 54 were classified
as UNKNOWN and we deduced that they were heavy
traffic using HTTP or peer-to-peer protocols; yet, more
investigations are needed to determine if they were false
positive anomalies or not. However we noticed that 149
of the 165 anomalies identified as ATTACK were also
detected with the method proposed in this paper.

The method proposed by Dewaele et al. [4] used a
time bin of 1 min; thus, in the worst case an anomaly
would be reported 1 min after it occurred. However,
the pattern-recognition method proposed in this pa-
per is able to report anomalies after the window slides,
meaning every 3 s in this evaluation. Consequently, the
detection delay with our method is shorter than that
of the method based on statistical analysis. The new
method can help operators to become rapidly aware of
when anomalies appear in network traffic.

6. CONCLUSION AND FUTURE WORK
We first highlighted the need for identifying anoma-

lies in this paper, and understanding network traffic
behavior on all temporal and spatial scales. We demon-
strated that anomalous traffic has characteristic shapes
in time and space. A darknet trace exhibited several
spatial-temporal patterns for different anomalies in a
snapshot, and a trace taken from a trans-Pacific back-
bone had anomalies, in heavy traffic, that were still
highlighted. These structures represented particular



distributions of traffic features, and should be a good
medium for detecting anomalies in network traffic.

The main contribution of this paper was to propose
a new approach to detecting traffic anomalies based on
pattern recognition. We took advantage of graphical
representations to break down the dimensions of net-
work traffic. Indeed, image analysis provided us with
powerful tools to reduce the complexity of network traf-
fic and extract relevant data. Thus, we mapped network
traffic data to snapshots rather than traditional time se-
ries, and we identified unusual distributions in the traf-
fic features through simple patterns (lines). This tech-
nique was implemented and its efficiency was demon-
strated by comparing it with a recent method based on
statistical analysis. A variety of network traffic anoma-
lies were detected by using our new method and we
applied a clustering technique to classify them. Fur-
thermore, pattern-recognition presents interesting ad-
vantages in its short detection delays, and its capabil-
ities in identifying anomalies involving a small num-
ber of packets. Consequently, our evaluation revealed
that the kinds of anomalies detected with the pattern
recognition-based method are slightly different than the
ones found with the statistical-based approach. How-
ever, a limitation in detecting anomalies was observed,
and was not specific to our approach. Since the image-
based technique proposed in this paper does not take
payload into consideration and has no port/host specific
information, it detects all heavy traffic as anomalous;
therefore, dense http, ftp, or p2p traffics were reported.

One important future project is to add the capability
of processing raw packets directly taken from a network
interface. Also, the current tool only takes packets into
account, but it would be better to emphasizes connec-
tions to represent the concept of flows. In addition,
other graphical representations have to be studied to
detect network anomalies. Further, more evaluations
have to be done; thus a closer inspection of obtained
results can lead to better tuning of the technique.
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