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ABSTRACT
Internet traffic anomalies are a serious problem that com-
promises the availability of optimal network resources. Nu-
merous anomaly detectors have recently been proposed, but
maintaining their parameters optimally tuned is a difficult
task that discredits their effectiveness for daily usage. This
article proposes a new anomaly detection method based on
pattern recognition and investigates the relationship between
its parameter set and the traffic characteristics. This analy-
sis highlights that constantly achieving a high detection rate
requires continuous adjustments to the parameters accord-
ing to the traffic fluctuations. Therefore, an adaptive time
interval mechanism is proposed to enhance the robustness
of the detection method to traffic variations. This adap-
tive anomaly detection method is evaluated by comparing
it to three other anomaly detectors using four years of real
backbone traffic. The evaluation reveals that the proposed
adaptive detection method outperforms the other methods
in terms of the true positive and false positive rate.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network monitoring

General Terms
Measurement, Security, Performance

Keywords
Internet traffic, Anomaly detection, Pattern recognition

1. INTRODUCTION
The success of Internet services results in a constant net-

work traffic growth along with an increasing number of anoma-
lies such as remote attacks and misconfigurations. These

∗Extended version of a paper published in the proceedings
of SAC 2011 [9].

anomalies represent a large fraction of the Internet traffic
that is unwanted and penalizes legitimate users from ac-
cessing optimal network resources. Therefore, detecting and
diagnosing these threats are crucial tasks for network op-
erators that are trying to maintain the Internet resources
made available. Intensive studies have been carried out in
this field, but the proposed anomaly detection methods still
have common drawbacks [15, 12]. Indeed, the sensitivity of
adapting the parameter set of these methods to traffic vari-
ations are still open issues. Since the relationship between
the parameter setting and traffic characteristics is misun-
derstood, in practice, selecting the optimal parameters is
challenging.

Only a few works have investigated this drawback cur-
rently discrediting anomaly detectors. A careful study of the
detectors based on principal component analysis (PCA) was
carried out by Ringberg et al. [15], and they identified four
main challenges including the sensitivity to analyzed traffic
and parameter tuning. In addition, an attempt to automati-
cally tune a method based on gamma modeling and sketches
was conducted by Himura et al. [12]. They designed a learn-
ing process for predicting the optimal parameters regarding
the best parameters for past data. However, this method
suffers from a high error rate as unexpected events do ap-
pear.

Recently, a pattern recognition based method has been
proposed [10, 11]. The main idea of this detection method
is to monitor the traffic in 2D pictures where anomalies ap-
pear as “lines”, which are easily identifiable using a pattern
recognition technique called the Hough transform [7]. One
advantage of this method is that its simple principles allow
us to intuitively select a suitable parameter set. The opti-
mal values of the parameters, however, fluctuate along with
the traffic throughput variations and require continuous ad-
justments, making it unpractical for real usage.

In order to provide a detector that is easily tunable and
robust to traffic variations, this article follows a similar ap-
proach to [10], but it uses fundamentally different 2D pic-
tures that allow for better highlighting anomalies. More-
over, the main contribution of this work is to obtain a com-
plete understanding of the proposed method parameter set
and provide a mechanism that automatically tunes it based
on the traffic variations. The advantages of this adaptive
method are demonstrated by comparing its results to those
obtained using fixed parameter tunings and those of three
other anomaly detectors using four years of real Internet
traffic. The results highlight the superiority of the proposed
method in terms of the true positive and false positive rates,



Table 1: Different kinds of common anomalies and their
particular traffic feature distributions.

Anomaly Traffic feature distribution

Port scan Traffic distributed in destination
port space and concentrated on single
destination host.

Network scan, Traffic distributed in destination
Worm, Exploit address space and concentrated on

limited number of destination ports.
DDoS, Netbot, Traffic distributed in source address
Flash crowd space and concentrated on limited

number of destination addresses.

emphasizing that automatically adjusting the parameter set
in regard to the traffic fluctuations is crucial for continu-
ously performing an accurate level of detection. Inspecting
the false negative rate of the proposed method allows us to
describe the particular class of anomaly that is inherently
missed by the proposed detector. Thus, the shortcomings of
the detector are well-defined and complementary detectors
are suggested.

2. ABNORMAL DISTRIBUTION OF TRAF-
FIC FEATURES

Recent works have identified anomalous traffic as alter-
ations in the distributions of the traffic features [14, 10, 4,
19, 6]. For example, Table 1 lists several kinds of anoma-
lies commonly identified in Internet traffic. Each kind of
anomaly inherently affects the distribution of two traffic fea-
tures. Similarly, in this article an anomaly refers to a set of
flows altering the distribution of at least one of the four fol-
lowing traffic features: the source IP address, destination
IP address, source port, and destination port. However,
the proposed approach for observing these alterations in the
traffic feature distributions is substantially different from
that in other works. Previously, anomalies have been mainly
detected by identifying the outliers in the aggregated traffic
using different formalisms — e.g., signals [14], histograms [6,
4], or matrices [18] — whereas, the proposed method iden-
tifies particular patterns in pictures. The analyzed pictures
are two-dimensional scatter plots, where each axis represents
a traffic feature, each plot stands for traffic flows, and the
particular traffic feature distributions of the anomalies are
easily identifiable as lines.

Figure 1 shows two examples of the pictures analyzed in
this article. Figure 1a displays traffic with regard to its
destination port and destination address. This graphical
representation of the traffic makes it easy to discriminate
the port scan, network scan, worm, and exploit from the
benign traffic as they appear as lines in the picture (Fig.
1a). Figure 1b, however, displays the traffic in regard to its
destination and source addresses, and permits other kinds
of anomaly to be observed. For instance, distributed denial
of service (DDoS), flash crowd and botnet activities appear
as horizontal lines in this scatter plot.

The three main advantages of this approach over the pre-
vious works are [15]: (1) the anomalous flows are inherently
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Figure 1: Example of two pictures highlighting anomalous
traffic as lines.

pinpointed in the scatter plots, whereas the identification of
the anomalous flows detected in a signal requires additional
extraction mechanisms [4, 16]. (2) The proposed approach is
able to monitor the pattern of a large-scale anomaly whereas
the methods detecting anomalous traffic as outliers fail if a
majority of the traffic is contaminated by anomalies (e.g.,
outbreak of virus). (3) In regard to the traffic features mon-
itored by the pictures and the direction of the identified line,
one can easily deduce the kind of observed anomaly.

3. ANOMALY DETECTION METHOD
The anomaly detection method proposed in this article

consists of five main steps:

1. The traffic of the current time interval is mapped onto
five different pictures.

2. The Hough transform is computed on each picture to
uncover the plot distributions.

3. Abnormal plot distributions are detected in the Hough
spaces.

4. Traffic information corresponding to the anomalous
plots are retrieved and reported.

5. The time interval is shifted and step 1 is repeated.

3.1 Pictures computation
The proposed approach takes advantage of several kinds

of pictures to monitor the different aspects of the traffic and
highlight the different kinds of anomalies. The analyzed
pictures are 2-D scatter plots designed from four traffic fea-
tures: {source IP address, destination IP address, source
port, destination port}. For the remainder of this paper the
term traffic features will refer to only these four traffic fea-
tures. The five picture categories correspond to all the pos-
sible pairs of traffic features containing IP address. Namely,
the x and y axis of the picture, respectively, correspond to
the following pairs of features:

• Source IP address, destination IP address

• Source IP address, source port

• Source IP address, destination port

• Destination IP address, source port

• Destination IP address, destination port



(a) Picture (b) Hough space

Figure 2: Principles of Hough transform.

A flow in the analyzed pictures is represented by a plot
that is located using the two following mechanisms. (1)
The port space is shrunk to the size of the pictures: Let
assume a 1000-pixel picture (ySize = 1000) that has a y
axis standing for the source port, then a http flow, i.e.,
SrcPort = 80, is plotted at y = bSrcPort ∗ ySize/216c =
b80 ∗ 1000/65535c = 1, and each pixel of the picture repre-
sents approximately b65535/1000c = 65 distinct port num-
bers. (2) The IP address space is at first hashed by ignor-
ing the first h bits of the addresses and then shrunk to the
size of the picture. For example, supposing h = 16 and a
1000 pixel wide picture (xSize = 1000) with an x axis as
the source IP, then a flow from the source IP 192.168.10.10
is plotted at x = b(SrcIP mod 232−h) ∗ xSize/232−hc =
b(192.168.10.10 mod 216)∗1000/216c = b(0.0.10.10)∗1000/216c =
39. Notice that this article only deals with square pictures,
meaning that the xSize = ySize.

3.2 Hough transform
A well-known image processing technique called the Hough

transform [7, 11] helps us in extracting the relevant infor-
mation from computed pictures. The Hough transform is
commonly used to detect the parametric structures (e.g.,
line, circle, or ellipse) in pictures and has the advantage of
being robust to noise and able to detect incomplete shapes.

The basic usage of the Hough transform allows for the
identification of lines in a picture. It consists of a voting
procedure, where each plot of the picture votes for the lines
it belongs to. Formally, each plot in the picture p = (xp, yp)
votes for all the θ and ρ that satisfy ρ = xp ·cos(θ)+yp ·sin(θ)
(line equation in polar coordinates). All the votes are stored
in a two-dimensional array, called the Hough space, in which
one dimension stands for θ and one for ρ. Figure 2 depicts
an example of the Hough transform. The analyzed picture
(Fig.2a) contains three plots, and the votes for each plot are
represented by a curve in the Hough space (Fig.2b). The
maximum number of votes in the Hough space is obviously at
the intersection of the three curves I = (θ0, ρ0), identifying
the line passing through the 3 plots, ρ0 = x · cos(θ0) + y ·
sin(θ0).

In order to find the local maxima in the Hough space,
thus the prominent lines in the picture, a robust peak detec-
tion based on the standard deviation σ of the Hough space
is implemented. Therefore, all flows corresponding to the
elements of the Hough space that are higher than 3σ are
reported as anomalous.

3.3 Complexity
The computational complexity of the proposed method is

mainly one of the Hough transforms that is linear to the
number of plots in picture. In a worst case scenario, each

Table 2: Heuristics deduced from main anomalies previously
reported [3, 10] and manual inspection of data-set considered
in this article.

Category Label Details

Attack Sasser Traffic on ports 1023/tcp, 5554/tcp
or 9898/tcp

Attack RPC Traffic on port 135/tcp
Attack Ping High ICMP traffic
Attack Flood Traffic with more than 50% of SYN,

RST or FIN flag. And http, ftp, ssh,
or dns traffic with more than 30%
of flag SYN

Attack NetBIOS Traffic on ports 137/udp or 139/tcp
Special Http Traffic on ports 80/tcp and 8080/tcp

with less than 30% of SYN flag
Special dns, ftp, Traffic on ports 20/tcp, 21/tcp,

ssh 22/tcp or 53/tcp&udp with less
than 30% of SYN flag

Special Unknown Traffic that does not match
other heuristics

plot represents a single flow so the number of plots in the
pictures is equal to the total number of flows N . Let f = 5
be the number of picture categories, t the traffic duration
divided by the time interval, and ni,j,k the number of plots
in the picture k of category i at the time interval j. The
cost of the proposed algorithm in the worst case is linear to
N :

fX
i=1

tX
j=1

O(ni,j) =

5X
i=1

O(N) = O(N)

In our experiments, the proposed method takes about one
minute to analyze a 15-minute traffic trace from the MAWI
archive.

4. DATA AND PROCESSING
All the experiments conducted in this work are based on

the traffic traces publicly available in the MAWI archive [5].
This database provides daily backbone traffic traces that
contain 15-minutes of traffic taken from a trans-Pacific link
between Japan and the U.S. Since 2001 this link was an 18
Mbps CAR on a 100 Mbps link, but it was replaced by a
full 100 Mbps link in 2006/07/01. This article particularly
focuses on two data sets from the MAWI archive; (1) the
first week of August 2004 was particularly affected by the
Sasser worm [3, 10] and provides valuable support for il-
lustrating the benefits of the proposed method. (2) All the
traffic recorded from 2003 to 2006 allowed us to evaluate the
global performance of the proposed method by comparing its
results to the ones of other anomaly detectors.

Due to the lack of ground truth data for backbone traffic,
the evaluation of the proposed detector relies on heuristics
that is fundamentally independent from the principle of the
proposed method (Table 2). Indeed, these heuristics is based
on well-known port numbers and abnormal usages of TCP
flags [3, 10], whereas the proposed method uses only the
port numbers as indexes and does not rely on the applica-
tion information related to them nor the TCP flags. Heuris-
tics classifies traffic into two categories, attack and special,
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Figure 3: Accuracy of proposed method using four different
picture sizes.

and helps in quantifying the effectiveness of the detection
method.

An anomaly detector is expected to report more traffic
classified as attacks than those labeled special. Thus, the
accuracy of a detector is defined as the ratio of the alarms
classified as attacks by the heuristics listed in Table 2.

5. PARAMETER TUNING AND DRAWBACKS

5.1 Experimental parameter tuning
The following experiments aim at finding the optimal pa-

rameter tuning of the proposed method using one week of
traffic affected by the Sasser worm (Section 4). Furthermore,
these experiments uncover the correlation between the two
main parameters, i.e., the size of picture and the time inter-
val, and show that the performances of the proposed method
are not affected by any variance in the h value as long as the
number of possible indexes is higher than the picture size,
232−h > xSize.

Figure 3 depicts the average accuracy of the detection
method using numerous parameter values. It highlights that
the proposed method is able to achieve an accuracy that is
higher than 0.9 for any time interval > 4s and a suitable
picture size. Furthermore, Fig. 3 indicates that the optimal
picture size is proportional to the size of the time interval.
For instance, if the time interval is less than 8s the best per-
formance is obtained with a picture size set to 1024, whereas
the time interval ranges (9, 16) are suitable for a picture size
equal to 2048, and so forth. Intuitively, a larger time inter-
val involves a greater number of plots in the pictures; thus,
to avoid meaningless saturated pictures, the optimal size of
a picture increases along with the size of the time interval.

Although the specific values given here are suitable for
the analyzed traffic, different values might be more effective
for traffic having different properties. Obviously, traffic with
the same properties but a higher throughput displays more
plots in the pictures, and thus in this case, smaller time
intervals are required to maintain an acceptable number of
plots in the pictures.

5.2 Evaluation of optimal parameter
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Figure 4: Evaluation of maximum acceptable number of
plots to perform the Hough transform. The plot density
is the maximum acceptable number of plots over the picture
area.

The time interval is the parameter that controls the amount
of traffic displayed in the pictures. Thus, as the proposed
method inherently translates the traffic flows to the plots in
the pictures, the time interval allows us to select the quan-
tity of plots appearing in the pictures. The challenge in
setting the time interval is the trade-off between displaying
enough plots to have relevant pictures and limiting the sur-
rounding noise representing the legitimate traffic and hiding
anomalies.

The sensitivity of the implemented Hough transform to
the number of plots in the pictures is analyzed using syn-
thetic pictures that have a random line and various amounts
of uniformly distributed noise. The algorithm was performed
100 times on different pictures with the same level of noise.
If the 100 tests are successful then the noise is increased and
the algorithm is again performed. The highest noise level for
which all 100 executions of the algorithm succeed defines the
maximum acceptable number of plots in a picture. This ex-
periment was conducted using six different picture sizes, as
indicated in Fig. 4a. As expected, the maximum acceptable
number of plots in the pictures increases with the picture
size. Figure 4a shows that the maximum acceptable num-
ber of plots for picture sizes of 1024, 2048, 4096, and 8192
are respectively 33000, 95000, 275000, and 781000. Figure
4b shows that this increase is not linear to the area of the
picture and the common upper bound for all the considered
picture sizes is approximately 1% of the picture area.
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Figure 5: Plot growth for different picture categories
(xSize = 8192).

5.3 Dispersion of plots in pictures
The previous section provided an insight on how to se-

lect the suitable time interval for a particular picture, but
the proposed method analyzes five different pictures at the
same time. A crucial task is to understand the divergence
between the different kinds of pictures. Since the five picture
categories monitor distinct feature spaces, plots correspond-
ing to the same traffic are differently dispersed in all the
pictures. Therefore, the traffic is usually depicted by using
a different number of plots for two pictures from different
categories. For example, Fig. 5a shows the number of plots
for the five kinds of pictures for several time interval sizes.
This figure highlights that the number of plots appearing
in each picture category increases at different rates. A slow
increase in the number of plots means that many flows share
the same instance in the monitored feature spaces, whereas
a rapid growth highlights the flows spreading into the ob-
served feature spaces. The rate of increase of the plots for
each picture category is strongly related to the throughput
and the dispersion of the traffic in the feature space.

Since anomalies alter the traffic feature distribution, they
also significantly affect the increase in the number of plots.
Figure 5b is a typical example where the increase in plots for
certain picture categories is rapidly increasing due to anoma-
lous traffic. Indeed, the traffic analyzed in Fig. 5b contains
an outbreak of the Sasser worm highlighting a considerable
increase in the number of plots for two picture categories
monitoring the destination address. This observation is in

accord with the behavior of the Sasser worm manually ob-
served in the traffic trace, that is, the worm tries to infect
numerous remote hosts to spread throughout the network.

Despite their differences, the two traffic analyzed in Fig.
5 are taken from the same traffic trace (Fig. 5b represent-
ing the first three minutes of the traffic trace, whereas Fig.
5a is the traffic recorded three minutes later), illustrating
two drawbacks of the proposed method. (1) For the same
traffic, the number of plots in all the picture categories is
significantly different. Thus, the suitable time interval for a
picture from a certain category does not necessarily suit the
pictures from the other categories. (2) The increase in plots
for a certain picture category sharply varies especially when
anomalous traffic appears. Thus, the suitable time interval
for a single picture category fluctuates over time.

6. ADAPTIVE TIME INTERVAL
Here, an improved version of the anomaly detection method

is proposed to overcome the drawback identified in the pre-
vious section. This new version assigns different time in-
tervals to all the picture categories and adapts these time
intervals to the traffic variation. Therefore, the value of the
time intervals is no longer a fixed value taken as an input,
but it is automatically computed by taking into account the
throughput and the traffic distribution in the traffic feature
spaces.

The proposed improvement consists of controlling the amount
of monitored traffic based on the quantity of plots in the pic-
ture instead of the time interval. The Hough transform is
performed only if a certain number of plots p are displayed
in the picture (regardless of the time interval corresponding
to the traffic mapped into the picture), and other pictures
keep monitoring the traffic until they display a sufficient
number of plots, p. Therefore, all the pictures stand for dif-
ferent time intervals and the Hough transform is performed
at different instants of time for each picture. The first two
steps of the algorithm proposed in Section 3 are replaced by:
(1) Map traffic to pictures until a picture displays p plots.
(2) Compute the Hough transform for pictures with p plots.
In addition, the time interval parameter is replaced by p,
which is the number of plots required to perform the Hough
transform. The value of p is directly deduced from the pic-
ture size to assure the success of the Hough transform. The
upper bound for p is 1% of the picture area (Section 5.2),
and the lower values help in quickly reporting the anomalies
since the Hough transform is performed earlier. However,
too small p values result in irrelevant pictures as the sample
traffic displayed in pictures is insignificant. In the follow-
ing experiments, p is arbitrarily set to 0.5% of the picture
area, p = 0.05 · xSize2. Hereafter, this new version of the
detection method is referred to as the adaptive method.

6.1 Performance improvement
The benefit of the adaptive method is evaluated by us-

ing one week of traffic (Section 4). For clarity reasons and
because all the traffic traces reach a similar conclusion, the
following focuses only on the first day of the analyzed traffic.

6.1.1 Robustness to traffic variation
Figure 6 displays the time intervals corresponding to all

the pictures computed during the analysis of the 15 minutes
of traffic. The first four minutes of this traffic are signif-
icantly affected by the Sasser worm resulting in a higher
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Figure 6: Evolution of time interval corresponding to pic-
tures computed during 15 minutes of traffic.

throughput and an increase in the number of destination
addresses. Nevertheless, the method successfully handled
the traffic variation, that is, the time intervals represented
by the pictures monitoring the destination address remain
from 1 to 5 seconds during the Sasser outbreak (Fig. 6).
However, the same quantities range from 14 to 25 seconds
during the last four minutes of traffic, where the traffic is
much less polluted by the Sasser worm. This example il-
lustrates the benefit of the adaptive method since selecting
a fixed value for the time interval of the basic method is
challenging.

6.1.2 Accuracy gain
The only parameter of the adaptive method is the picture

size, and by setting it to three different values, namely 1024,
2048, and 4096, the same high accuracy score is observed,
0.99, 0.98, and 0.99, respectively. However, the number of
reported alarms decreases as the picture size increases, which
is 373, 173, and 117 events respectively. Thus, for the fol-
lowing experiments the picture size is set to 1024 in order
to report as much anomalous traffic as possible.

The comparison between the two versions of the method
emphasizes the better false positive and true positive rates
of the adaptive method. Namely, it identifies 369 source ad-
dresses infected by Sasser (i.e. 86% of the Sasser traffic man-
ually identified). However, the basic method, with identical
parameters but a fixed time interval of 10 seconds, identifies
only 258 source addresses related to Sasser (i.e. 60% of the
Sasser traffic manually identified). The basic version of the
method is able to identify the same amount of Sasser traffic
only if the time interval is set to one second, however, in
this case 229 http traffics were also reported and a manual
inspection revealed that they are benign traffic regarded as
false positive alarms.

7. EVALUATION
The adaptive detection method is evaluated by analyz-

ing four years of MAWI traffic (i.e. 2003, 2004, 2005, and
2006) and comparing its results to the outputs of three
other anomaly detectors based on different theoretical back-
grounds.
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Figure 7: PDF of accuracy of four detectors for four years
of MAWI traffic.

7.1 Compared detectors
For performance comparison we select three detection meth-

ods that are, similarly to the proposed method, analyzing
only packet header and aim at finding nonspecific classes
of anomaly. These three compared detectors are (1) the
well-known PCA-based detector [14] (in this work the imple-
mentation of this detector relies on sketches to analyze traf-
fic taken from a single link [13]), (2) the detection method
based on multi-scale gamma modeling and sketches [6], and
(3) the detector based on the Kullback-Leibler (KL) diver-
gence and association rule mining [4]. The picture size pa-
rameter of the adaptive method is set to 1024, whereas, the
parameters of the three other methods are set with fixed and
arbitrary values that are globally suitable for the analyzed
MAWI traffic.

The four detectors commonly aim at finding any kinds of
traffic anomaly by inspecting only IP header, however, they
stand for separate classes of anomaly detector as they aggre-
gate traffic using different formalisms and rely on distinct ap-
proaches. Namely, the proposed method monitor the traffic
using pictures, whereas, the PCA-based one analyzes traffic
matrices and the gamma and KL detectors take advantage
of histograms. Although the gamma and KL detectors are
both representing traffic in histograms, they are fundamen-
tally different; the gamma-based detector is looking for out-
lier traffic whereas the KL-based one is a predictive method
reporting abnormal traffic variances. Therefore, comparing
the proposed adaptive method to these three anomaly de-
tectors permits a reliable evaluation.

7.2 Reported anomalies
This section inspects the anomalies that are reported by

the proposed adaptive detection method in order to evaluate
its true and false positive ratio. Due to the lack of ground
truth data (i.e., backbone traffic with annotated anomalies)
the performance of the proposed method is evaluated us-
ing two methodologies; (1) A coarse-grained evaluation with
prominent anomalies manually identified in the traffic. (2)
A fine-grained comparison of the accuracy using three other
detection methods and inspection of the traffic reported by
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Figure 8: Application breakdown of the analyzed traffic and the results of the proposed method.



the detectors and labeled as attack by the heuristics of Ta-
ble 2.

Prominent anomalies.
We manually inspected several characteristics of the ana-

lyzed traffic to identify the prominent anomalies that have
to be reported by the detection method. Figure 8 displays
two characteristics of the analyzed traffic, namely the per-
centage per application of transmitted packets and bytes.
The application corresponding to each traffic is recovered
using the CoralReef port-based classifier [1].

We identified five main events that have significantly af-
fected the characteristics of the MAWI traffic from 2003 to
2006 (Fig. 8a and Fig. 8b). Four events are identified
by inspecting the percentage of transmitted packets per ap-
plication; from August 2003 to January 2004 we observed
a substantial number of ICMP flows constituting a long-
lasting ping flood. The spreading of the Blaster worm is
also observed from August 2003 in the MAWI traffic. An-
other worm called Sasser is observed from June 2004 to June
2005 in the form of three peaks representing three outbreaks
of different variants of the worm. After the update of the
link in July 2007, an important traffic against DNS servers
is observed. This traffic is particularly intense in the mid-
dle of November 2006 (e.g., the DNS traffic measured on
the 2006/11/11 stands for 83% of all packets recorded this
day). Regarding the percentage of transmitted bytes per
application another event is observed from August 2003, it
corresponds to the outbreak of a email-based worm, called
Sobig.

The traffic transmitted by the three worms manually iden-
tified in the analyzed traffic (i.e., the Sobig, Blaster and
Sasser worms) are successfully reported by the proposed
adaptive method (Fig. 8c). Since these worms spread in
the network by contacting a substantial number of peers
the corresponding traffic highlights an abnormal dispersion
in the destination IP address space that is easily identified
by the proposed method. The adaptive method also effec-
tively identifies the DNS flood appeared at the end of 2006
(Fig. 8c). This traffic is characterized by numerous hosts
initiating several connections to a few servers. Thereby, the
proposed method successfully detect this anomalous traffic
because of its concentration in the destination IP address
space and its distribution in the source IP address space.

Although the properties of the traffic have significantly
varied over the four years (particularly after the link up-
date), the proposed adaptive method efficiently detected
anomalous traffic without any parameter adjustment from
network operators.

Accuracy and attacks breakdown.
Based on the heuristics of Table 2, the proposed adaptive

method is evaluated by accuracy comparison with the three
other detection methods.

Figure 7 shows the accuracy achieved by the four detectors
for each year of analyzed traffic. The average accuracy of the
proposed method is higher than the one of the three other
detectors during the four years of MAWI traffic. Among
the three other detection methods the KL-based one is the
best detector in terms of accuracy, moreover, it occasionally
outperforms the method proposed in this article (Fig. 7b
and Fig. 7c).

The circumstances in which the KL-based detector re-
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Figure 9: Breakdown of alarms reported by four detectors
and classified as attacks during four years of MAWI traffic.

markably outperforms the other detectors were thoroughly
inspected and this highlighted the fact that this detector re-
ports a high ratio of attacks but out of only a small number
of alarms. Consequently, the KL-based detector achieves a
high attack ratio along with a high false negative rate (i.e.
missed anomalies). Figure 9 shows the quantity of attacks
reported by each detector classified with the labels from Ta-
ble 2 (RPC is omitted as only 11 alarms of this kind were
identified in the four years of traffic) and emphasizes the
large amount of anomalies missed by the KL-based one.

The PCA and Gamma-based detectors, however, report
the same quantity of attacks as the proposed method along
with numerous alarms classified as special (Fig. 7). Al-
though the proposed method is more sensitive to Sasser
and attacks towards NetBIOS services, the Gamma-based
method detected slightly more unusual ping traffic (66 alarms)
and traffic labeled as flood (337 alarms) for the four years of
analyzed traffic. Nevertheless, the PCA and Gamma-based
detectors were considerably worse than the adaptive method
in terms of accuracy, and this drawback is due to the quan-
tity of traffic classified as special that was reported by these
two detectors (i.e. high false positive rate).

The advantage of the adaptive method is to consistently
adapt its time interval over the four years of analyzed traf-
fic, and therefore, it constantly detects a large quantity of
anomalous traffic while the number of reported benign traf-
fic is low.

7.3 Missed anomalies
In order to highlight the limits of the proposed method

this section inspects its false negative ratio, namely the pro-
portion of anomalies that are missed by the proposed detec-
tion method. Nevertheless, due to the lack of ground truth
data identifying the missed anomalies is a challenging task.
The two following methodologies help us to pinpoint anoma-
lous traffic that is not reported by the proposed detector; (1)
A coarse-grained evaluation with prominent anomalies man-
ually identified in the traffic. (2) A fine-grained inspection of
anomalous traffic reported by the three compared detection
method (i.e., Gamma-based, KL-based and PCA-based) but
not by the proposed adaptive method.
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Figure 10: Breakdown of alarms reported by the Gamma-
based, KL-based and PCA-based but not by the proposed
detector during four years of MAWI traffic.

Prominent anomalies.
The manual inspection of the analyzed traffic revealed five

prominent anomalies of which one is partially missed by the
proposed adaptive method, that is the ping flood emerged
in 2003 (Fig. 8a and 8c). This significant ping flood is char-
acterized by numerous point to point high-rate flows (here-
after refered as alpha flows) using the ICMP protocol that
are difficulty detectable by the proposed method for several
reasons. First, since ICMP traffic have no port information
it is only monitored in one of the five picture categories.
Second, this traffic mainly consists of a set of long-lasting
point to point flows without common source or destination,
thus, preventing it to be shown as a line in analyzed pic-
tures. Finally, the typical characteristic highlighting this
anomalous traffic is the substantial number of transmitted
packets whereas this feature is not monitored by the pro-
posed detection method.

Attacks detected by other detectors.
We investigate the results of the three compared detection

methods (i.e., Gamma-based, KL-based and PCA-based) to
uncover the false negative rate and shortcomings of the pro-
posed adaptive detection method. Since there is a low prob-
ability for a benign traffic to be reported as anomalous by
the three compared detection methods, we consider a traffic
as false negative if it is reported by all the detection meth-
ods but not the proposed one and it is categorized as attack
by the heuristics of Table 2.

As shown in Figure 10, 80% of the anomalous traffic missed
by the proposed detection method is labeled as ping or flood
by the heuristics. This traffic is mainly composed of alpha
flows containing numerous Ping or SYN packets and rep-
resenting one-to-one connections (contrarily to the success-
fully reported traffic from worms or DDoS attacks standing
for one-to-many or many-to-one connections). These one-
to-one connections appear in the analyzed pictures as single
points and are difficult to identify using the proposed detec-
tion method. Furthermore, another characteristic of these
flows is that they account for a large fraction of the total
number of packets or bytes, however, these two traffic fea-

tures are not monitored by the proposed detection method.
Since the proposed detection method is focusing on the

distribution of the traffic features but not the volume of the
traffic this method is insensitive to alpha flows. Also the
proposed adaptive parameter tuning cannot overcome this
shortcoming as it is inherent to the theoretical background of
the proposed detection method. The class of anomaly misde-
tected by the proposed detector is however easily identifiable
with a rate-based detection method that is monitoring the
traffic volume. Therefore combining the proposed detection
method and a rate-based detector would permit to detect a
wider range of anomalies.

8. DISCUSSION
In addition to propose an adaptive detector, this article

reveals general considerations that have to be taken into
account in the domain of network traffic anomaly detection.

The results presented in this article emphasizes the need
of maintaining anomaly detectors parameter set optimally
tuned. Indeed, Section 5.3 demonstrates that the perfor-
mance of the anomaly detection method using fixed param-
eters is deteriorated when the characteristics of the traf-
fic fluctuates (e.g., variations of traffic volume). Moreover,
since anomalous traffic significantly alters the characteristics
of the traffic anomaly detectors underperform especially dur-
ing substantial anomaly outbreak. Consequently, adjusting
the parameter set in regard to the fluctuations of the traf-
fic is required to maintain the effectiveness of the detection
method. These adjustments are enabled by investigating
the relations between the theory underlying the detection
method and the characteristics of network traffic.

The evaluation of the proposed adaptive detection method
validates the efficiency of the adaptive mechanism to opti-
mally set the parameters of the detector. Although this
adaptive mechanism ensures the anomaly detector to per-
form optimally we observed that a certain class of anomaly
is still misdetected by the proposed detector. This shortcom-
ing is inherent to the design of the detection method thus
independent from its parameter set tuning. In general, each
anomaly detection method is expected to have weaknesses
in detecting certain classes of anomaly, however maintaining
its parameter set optimally tuned ensures that the detector
is efficiently detecting the classes of anomaly it is designed
for.

Section 7.3 highlights the shortcomings of the proposed
detector and describes the class of anomaly undetectable by
this anomaly detection method. This identification of the
detection method shortcomings is a crucial task that allows
us to understand the limits of this detector and ease the
selection of a complementary detection method that would
overcome the identified shortcomings. Consequently our re-
sults support the benefits of combining anomaly detectors
[17, 8, 2].

9. CONCLUSIONS
This article proposed a new anomaly detection method

that takes advantage of image processing techniques to iden-
tify the flows with abnormal traffic feature distributions.
Crucial challenges rarely addressed in the appropriate liter-
ature were uncovered by investigating the major drawbacks
of this method; the sensitivity of anomaly detectors to traffic
variations and the role of the time scale in anomaly detec-



tion. Addressing these two issues resulted in a significant
improvement for the proposed detection method that over-
comes any adverse conditions as it analyzes traffic within
a time interval that is automatically adapted to the traffic
throughput and the distribution of traffic features.

The evaluation of this adaptive method using real Internet
traffic highlighted its ability to maintain a high detection
rate while the traffic was significantly altered by anoma-
lies. Therefore, these experiments indicated that the adap-
tive time interval enabled 26% more worm traffic to be de-
tected, and decreased the false positive rate. The adaptive
detection method proposed in this paper is also validated by
comparing it with three other detection methods and using
four years of real backbone traffic. The results highlighted
that the proposed adaptive method allows for the detection
of almost all the anomalies reported by the other detectors
while it achieves the lowest false positive rate. We identified
a class of anomaly that is disregarded by the proposed detec-
tion method and discussed the benefit of complementary de-
tection methods to overcome these shortcomings, however,
the study of combining several anomaly detection methods
is left for future works.
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