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ABSTRACT
System logs are useful to understand the status of and detect faults
in large scale networks. However, due to their diversity and volume
of these logs, log analysis requires much time and effort. In this
paper, we propose a log event anomaly detection method for large-
scale networks without pre-processing and feature extraction. The
key idea is to embed a large amount of diverse data into hidden
states by using latent variables. We evaluate our method with 15
months of system logs obtained from a nation-wide academic net-
work in Japan. Through comparisons with Kleinberg’s univariate
burst detection and a traditional multivariate analysis (i.e., PCA),
we demonstrate that our proposed method detects anomalies and
ease troubleshooting of network system faults.
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1 INTRODUCTION
System logs are one of the most useful sources to understand the
state of a network. In an operational network, syslog is widely used
for collecting network logs and allows one to gather logs from all
devices at one server. However, it is not easy for network operators
to investigate the details of network problems with the logs because
of their diverse and massive nature. Many log analysis methods

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
Big-DAMA’18, August 20, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5904-7/18/08. . . $15.00
https://doi.org/10.1145/3229607.3229608

𝑥 "
: “

B
G

P 
st

at
 a

t d
ev

3”
, D

ec
 3

1

Event ID(0-120)

𝑞(𝑧|𝑥)

CVAE(Encoder)

𝑧
Sampling

Latent var.
distribution

Minimize reconstruction error + KL-Divergence: 𝐾𝐿𝐷(𝑞 𝑧 𝑥 ||𝑝(𝑧))
Training

Event ID(0-120)

𝑞(𝑧|𝑥)

Latent Var.
Distribution

Detection
Clustering/
Anomaly Detection
for each log type

𝐾𝐿𝐷(𝑞 𝑧 𝑥 ||𝑝(𝑧))

CVAE(Decoder)

CVAE(Encoder)

Latent
variables

⋯

#data points(54,720)
O

ne
 d

ay
 lo

ng
 d

at
a(

1,
44

0 
m

in
)

# of logs/minute
time series

𝑥 -
: “

ss
h

lo
gi

n 
at

 d
ev

1”
, A

pr
 2

𝑥 .
: “

ss
h

lo
gi

n 
at

 d
ev

1”
, A

pr
 1

D
at

a:
 𝑥
"/

D
at

a:
 𝑥
-/

D
at

a:
 𝑥
./

⋯

𝑥 0
: “

B
G

P 
st

at
 a

t d
ev

3”
, D

ec
 3

1

⋯

#data points(54,720)

𝑥 -
: “

ss
h

lo
gi

n 
at

 d
ev

1”
, A

pr
 2

𝑥 .
: “

ss
h

lo
gi

n 
at

 d
ev

1”
, A

pr
 1

O
ne

 d
ay

 lo
ng

 d
at

a(
1,

44
0 

m
in

)

Figure 1: Analysis overview

for finding anomalies and their root causes have been proposed
to overcome this problem [1, 9, 11, 12, 14, 18]. In many cases, one
first classifies the logs by their message type (i.e., log template) then
treats them as statistical time series to be later processed through
statistical analysis. System logs have an intrinsic nature that makes
automatic analysis very difficult; their time series show a variety
of characteristics such as periodicity, burstiness, randomness, and
sparseness, compared with other time series data. Most studies have
been devoted to developing effective pre-processing methods (e.g.,
filtering, smoothing, denoising) and appropriate discriminative log
time series features for analyzing their own data. However, we
require enough domain knowledge about the underlying networks
for optimizing the analysis methods.

We define an anomaly as time series behavior deviating from
the normal or usual state in log time series (details are given in
§3.3). To detect these anomalies, we propose a robust statistical
method that handles complicated system log time series, without
any specific (case-by-case) preprocessing (e.g., filtering, smoothing,
auto-regression) for log anomaly detection. The key idea of our
approach is to embed a large amount of diverse data into hidden
states by using latent variables, also known as topic modeling or
Latent Dirichlet Allocation (LDA) often used in natural language
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processing. A topic model discovers topics as latent variables from
a collection of documents. We borrow the idea of this approach:
by assuming hidden states in each log time series, we represent
log time series features by latent variables. As a result, we can
characterize each time series without any labels or preprocessing.

Our proposed method consists of two phases (see also Figure 1):
(1) The training phase embeds log time series characteristics into la-
tent variables by using Conditional Variational Autoencoder (CVAE).
To mitigate the difficulty in handling various time series from de-
vices together, we provide CVAE with type of log messages as a
conditional label. (2) The detection phase highlights anomalies de-
viating from the distribution of the latent variables with clustering
algorithms.

Using syslog data collected in a nation-wide academic network
in Japan (SINET4), we confirm through evaluation that CVAE has
higher discriminative power for analyzing complex time series than
Kleinberg’s univariate burst detection [8] and a traditional multi-
variate analysis (Principal Component Analysis; PCA). With case
studies, we demonstrate that our method is useful in troubleshoot-
ing network system faults.

The contribution of this paper is twofold. We first propose our
latent variable-based method for highly diverse log time series
data without any data-specific preprocessing. Next, we discuss the
effectiveness of the method when we applied it to real network
syslog data.

2 RELATEDWORK
Many studies have been conducted for finding anomalies and their
root causes [1, 12, 14] in log data. Zhong et al. [18] proposed an
anomaly detection method for both device and network errors with
fine log time series feature creation. Kimura et al. [5] introduced an
online failure prediction method based on log time series features.
Lu et al. [11] focused on the task duration time and proposed root
cause analysis methods with distributed computing system logs. As
these methods are based on data specific feature creation, they per-
form well in each considered environment. However, to apply these
methods to other network systems, we have to re-define features
to optimize these methods. This requires deep domain knowledge
of the underlying network systems to make efficient use of these
methods. In addition, these methods miss unknown or new anom-
alies, which are not captured by the pre-defined features. Instead,
we focus on an approach that does not require pre-definition of
anomalies but learns the normal state of the system from log data.

There are methods of giving new insights for operators with
knowledge mining from log data [4, 17]. Kobayashi et al. [9] pro-
posed a time series causal inference method in network logs. Hacker
et al. [3] introduced a log classification method based on the sever-
ity of network operation. These methods do not require predefined
features because the features characterizing the data can be ob-
tained through learning. However, in contrast with our method,
they do not aim at anomaly detection but knowledge mining.

We focus on anomaly detection without specific feature creation
for more general analysis of logs. PCA is a standard algorithm of
learning or obtaining time series features from data. Lakhina et
al. [10] proposed a general traffic analysis method based on feature
learning with PCA. They successfully detected traffic anomalies

without specific definitions of those anomalies. However, as log
data are highly sparse and discrete, which differ with traffic data,
it is not enough to learn features with such a naive approach (i.e.,
PCA). Thus, we use CVAE, which is based on a higher assumption
that observed data are subject to latent variables. We choose a PCA
based method as a baseline algorithm and aim to outperform it with
our proposed method.

3 METHODOLOGY
3.1 Overview
The key idea of our proposed method is to model log time series
characteristics based on the latent variables. Latent variable analysis
is conducted to attempts to explain observable data by unobserv-
able (i.e., latent) variables. In our context, as the observable data
are log time series, we intend to represent the characteristics of ob-
servable log time series, such as periodicity, frequency, burstiness,
by latent variables. By applying a clustering algorithm or anom-
aly detection method to the latent variables, we can distinguish
anomalous behavior of log time series from the normal behavior.
Formally, as it is difficult to compute latent variables directly, we
have to estimate them by assuming certain statistical models. In
this study, we rely on Conditional Variational Autoencoder (CVAE)
for estimating latent variables.

An overview of the proposed method is illustrated in Figure 1.
First, we construct the time series of the number of log appearances
per device per template for one day. We call it a data point. Next,
with CVAE, we reduce the dimensions of the original vectors by
using CVAE. We call such a reduced vector a latent variable. We
train CVAE model so that the latent variable effectively represents
the potential behavior of log time series. Then, each data point is
embedded into a latent variable. After that, we apply a clustering
algorithm to the latent variables and finally detect outliers in log
time series as anomalies.

3.2 Training phase
We briefly explain CVAE, a variation of the Variational Autoencoder
(VAE). The VAE [7] is a stochastic variational inference method
based on the variational Bayesian approach. Since this is an unsu-
pervised method, annotations for logs are not necessary.

Let us consider one-day long log time series x generated by a ran-
dom process based on invisible continuous random variable z. This
z is also subject to a prior distribution pθ (z). Thus, x is subject to a
conditional distribution pθ (x|z). The goal is to obtain latent vari-
ables z from input x. In order to get the latent variables, we estimate
the distribution pθ (z|x) with Bayes’ theorem and approximate dis-
tribution qϕ (z|x). Now, the objective is to maximize the marginal
likelihood (MLH) logpθ (x) = DKL(qϕ (z|x)∥pθ (z|x)) + L(θ ,ϕ, x).
This equation is rearranged as follows (details are given in [6, 7]).

logpθ (x) ≥ L(θ ,ϕ, x), (1)
L(θ ,ϕ, x) = −DKL(qϕ (z|x)∥pθ (z))

+Eqϕ (z |x)[logpθ (x|z)]. (2)

We train the model that generates qϕ (z|x) from input x by op-
timizing the lower bound L(θ ,ϕ, x). The training process is as
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sshd[21151]: Invalid user admin from 192.168.0.10
sshd[22569]: Invalid user virus from 192.168.0.15

sshd[ * ]: Invalid user * from *

Figure 2: An example of log templates

follows. First, we consider the prior distribution as a Gaussian
pθ (z) = N(z; 0, I) and let qϕ (z|x) be a multivariate Gaussian. Next,
we estimate the parameters (ϕ) of the posterior distribution (qϕ (z|x))
with a fully connected neural network (encoder). Then, we acquire
the distribution of the latent variable qϕ (z|x), and through the sam-
pling process from it, we obtain the latent variable z. Finally the
decoder neural network reconstructs x̂ from the latent variable z,
and we feedback the loss values in Eq. (2). Reviewing Eq. (2), we
can consider the first term (Kullback-Leibler divergence, KLD) as
the distance between estimated distributions qϕ (z|x) and pθ (z), and
the second term (Marginal Likelihood, MLH) as the reconstruction
error between x and x̂. Through these processes, we can compute
Eq. (2) and proceed with the training of the encoder and decoder
neural networks.

The CVAE [6] is a variation of the VAE. CVAE uses label infor-
mation when generating the latent variable z and reconstructing
x̂. We define the conditional label as the event that is an index of a
unique combination of devices and log templates.

3.3 Detection phase
After applying CVAE to log time series data, we obtain the latent
variables for each data. Now, as the latent variables well-describe
time series trends, the goal of this phase is to build upon the time
series description by latent variables to find the deviation from
“normal” states.

Some latent analysis methods define the anomaly level based
on reconstruction errors [10, 16]. In our case, we can use MLH for
reconstruction errors. However, there are two problems with using
MLH. (1) The reconstruction process is stochastic and MLH values
follow a Gaussian distribution. (2) MLH is biased by the intensity
of the original data.

To solve these problems, we rely on the distance between latent
variable distribution (qϕ (z|x)) and the assumed prior distribution
(pθ (z)) by computing DKL(qϕ (z|x)∥pθ (z)) in Eq. (2). After training,
the learned model generates the distribution of the latent variable
(qϕ (z|x)) from input data x as the output in a hidden layer (shown
at the bottom of Figure 1). We use this distribution qθ (z|x) for detec-
tion, not the sampled value z. Then, we deterministically compute
the KLD (DKL(qϕ (z|x)∥pθ (z))). The KLD represents the trend in the
input time series x. Thus, input data with similar KLD value belong
to the same trend. Therefore, we can obtain reference behavior by
clustering KLD values. Note that the KLD value is not an anomaly
level but a state of input time series. Thus, we consider the data
whose KLD value deviates from others as an anomaly regardless of
the magnitude of numeric value of the KLD.

Figure 3 shows an example of the KLD and MLH values of the
dataset. The horizontal axis shows data points in descending order
of the number of log appearances, and the vertical axis shows
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Figure 3: Kullback Leibler divergence and Marginal Likeli-
hood (whole dataset)

the KLD (top) and MLH (bottom) values. In particular, the gray
marks indicate days without any log appearances (i.e., 1,440-long
zero vector), and the blue ones show more than equal to one log
appearances on that day. Even if we input no log appearances data
(i.e., gray marks in the Figure) to CVAE, KLD values are different for
each event thanks to the weight of the conditional label (i.e., event
ID). It enables such data points to belong to appropriate clusters
depending on the behavior of the event. As shown in the figure,
the MLH values are more spread and biased by the number of log
appearances. In addition, they increase along with the number of
log appearances. On the other hand, the KLD values are not biased
by the number of log appearances and are more stable than MLH
values. Therefore, we use the KLD as an indicator of time series
trend.

Once latent variable distribution is obtained and the KLD is com-
puted one can choose any clustering method for anomaly detec-
tion. In this study, we used a well-known density-based clustering
algorithm, Density-Based Algorithm for Discovering Clusters (DB-
SCAN) [2]. By applying DBSCAN to the KLD time series for each
event, we detect clusters of KLD (i.e., normal state of that type of
log) and anomalies that do not belong to any clusters.

4 DATASET AND COMPARISON
ALGORITHMS

4.1 Dataset
We use a set of network logs collected at SINET [15], a Japanese
research and education network. This network connects over 800
academic organizations in Japan and consists of eight core routers,
50 edge routers, and 100 layer-2 switches. We use 456 days data
from 2012/1/1 to 2013/3/31, consisting of ≈ 35M log messages from
130 devices (see also Table 1). This dataset is composed of well
known format syslog data gathered from commodity L2 switches
and L3 routers. Examples are shown in Figure 2 and the log category
of the dataset are shown in Figure 4 (manually classified).
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Table 1: SINET4 Dataset

logs devices templates events
All 34,722,578 130 1,789 9,226

Selected 943,257 24 33 120

Table 2: Comparison of methods

name multivariate determin. linear trans.
burst detection no yes -

PCA yes yes yes
CVAE yes no no

As log messages are string data, statistical techniques cannot be
applied directly. Thus, we generate log templates from raw log mes-
sageswith the supervised learning approach proposed by Kobayashi
et al. [9]. Log templates are log messages without variables (e.g.,
IP address), as shown in Figure 2. We then classify logs into log
templates and extract time series data from their time stamps for
each template per device. We thus generate 1,789 unique log tem-
plates from the whole dataset. We define an event as 456 of 1-day
log time series, which have the same log template in one device.
As a preliminary analysis, we manually selected 120 events and
applied CVAE to them (shown in Table 1) to make sure that the
dataset has several anomalies and the diversity of the time series.
We confirm that these selected events include a large variety of
time series trends such as periodicity, burstiness, and sparseness.

We construct log time series of the number of log appearances
for each minute per event per day (i.e., data point). The processing
flow is as follows: After we classified raw log data into the type
of logs per device, one event (for example, “ssh login at device 1")
has 456 days long log entries. We first count the number of log
appearances for each minute. Then, we split them for each days.
We now have 456 data points of event “ssh login at device 1". In
other words, each data point consists of one time series; It has
1,440 minute-length as X-axis and the number of log appearances
as Y-axis (shown as x1 and x2 time series graphs in Figure 1). We
also use conditional labels built on event labels concatenating log
time series. To input event labels into CVAE, we first assign unique
IDs to all the events and then encode them to one-hot vectors. If
the “ssh login at device 1" event has ID i , the conditional label is a
120 long vector and values are zero except index i . The value of
index i is one. Then, the conditional label has 120 dimensions. After
repeating the same process to all the 120 events, we finally obtain
120 × 456 = 54, 720 data points and conditional labels. In training
and detection phase, each data point is an input for CVAE.

4.2 Baseline algorithms
To understand the effectiveness of CVAE for log anomaly detection,
we compare it to two traditional baseline algorithms: Kleinberg’s
burst detection [8] and PCA. The three algorithms are summarized
in Table 2.

4.2.1 Burst detection. Otomo et al. [13] conducted log analysis
focusing on the burstiness and causality of log time series. They
first removed trivial logs (e.g., periodic and very frequent logs)
to prevent detecting trivial bursts then detected log bursts with

Kleinberg’s burst detection [8]. Applying the same algorithm to our
dataset, we confirm 448 log bursts out of all 54,720 data points. In
the following comparison, we use these bursts as a part of reference
of log anomalies.

4.2.2 PCA. To detect traffic anomalies, Principal Component
Analysis (PCA) is a well-studied algorithm [10, 16]. It translates
a set of input traffic time series data into main and residual sub-
spaces with a linear transformation. This algorithm is similar to
CVAE mapping raw data to the latent space, though CVAE is a
non-linear transformation. We implement a PCA-based anomaly
detector. Applying PCA to a set of log time series, we obtain princi-
pal components of the input dataset and separate them into main
and residual principal components with a threshold based on their
variance coverage. We then reconstruct each time series with the
main components and compute the reconstruction errors with the
original data. Finally, we apply a clustering method (DBSCAN) to
these reconstruction errors and obtain anomalies.

5 EVALUATION
In this section, we discuss the evaluation of our method using
456 day-long system log data obtained from SINET4. We compare
the performance of our method with PCA and burst detection
technique. Finally, we present two case studies that demonstrate
the effectiveness of our method for network troubleshooting.

5.1 Parameter tuning
We first briefly describe the parameter tunings of CVAE. Encoder
and decoder networks in CVAE each have four hidden layers. The
input layer has 1,560 dimensions (1440 dimension of time series and
120 dimension of label data). The encoding neural network has four
layers, and each layer has 512, 256, 128 and 64 units in order from
the input layer. We set the latent variables dimensions to 10. The
decoding neural network has the opposite structure of the encoder,
but the output size is 1,440 so that the output is a reconstructed time
series. To avoid over fitting, we dropout 30% of units for each layer
during training. During training, we empirically set the number of
epochs to 50 based on test trial results. We confirm that loss values
converge after training. Next, we compute KLD for each time series
using the learned encoder network and apply DBSCAN to KLD for
each event. We tune DBSCAN parameters for each event so that
a size of cluster is longer than a week. As the training process is
stochastic, the results are not the same even if the loss values are
converged. To mitigate this uncertainty, we train the model ten
times and adopt anomalies detected in majority votes.

We use a commodity computer (Xeon CPU and GTX-1080 GPU)
for processing. One training takes 489.5s on average of 10 trials.
The detection phase requires 45.1s on average to calculate KLD and
conduct DBSCAN.

5.2 Result overview
The results are summarized in Table 3. CVAE and PCA detected a
similar number of anomalies; 1,759 anomalies with CVAE and 1,825
with PCA. The overlapping number of anomaly was 1,335. Note
that a detected anomaly means time series behavior deviating from
the normal state as defined in §1.
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Table 3: Summary of results

Data Anomalies Precision #Bursts
CVAE 54,720 1,759 84.6% 240 (53.6%)
PCA 54,720 1,825 69.5% 323 (72.1%)

We consider such anomalies as having a relationship to actual
network system anomalies. To evaluate the effectiveness of detected
anomalies for network management, we manually inspected all
the detected anomalies and annotated them as true or false based
on the SINET4 trouble ticket data and our domain knowledge for
network management; For example, “ssh login" logs have periodic
appearance because they are generated by a CRON process includ-
ing remote ssh access. In this case, we consider periodic appearance
as “normal" and lack of periodicity as “anomaly".

As shown in the table, CVAE’s precision (TP/(TP + FP)) outper-
forms PCA’s. We also confirm that CVAE and PCA detected more
than half of the bursts. By inspecting the missing bursts, we find
two parameter tuning issues: (1) when similar burst patterns last for
a few days, DBSCAN extracts a cluster, not an outlier, the algorithm
thus does not detect this burst as an anomaly. (2) Intensive bursts
cause CVAE and PCA to detect a relatively small burst as a normal.

Figure 4 is the histogram of anomalies per log category. Or-
ange bars indicate anomalies detected with CVAE, white ones with
PCA, and gray ones with burst detection. In most cases, we find
that CVAE correctly detects anomalies such as burstiness and lack
of periodicity. Focusing on the case in which PCA detects more
anomalies than CVAE, we find anomalies not detected with CVAE
as false positives due to noise, which CVAE properly avoids (e.g.,
interface(agg) and service(ntp)). On the other hand, when CVAE de-
tects more anomalies than PCA (e.g., vpn(mpls)), we find that they
are mostly true positives thanks to its robustness against outliers
(see § 5.3).

5.3 Detailed comparison
Anomalies hidden in periodicity: Figure 5 shows the detailed
results of periodic remote access logs for 456 days. The top graph
shows KLD computed with CVAE and the bottom graph illustrates
reconstruction errors obtained with PCA. These logs appear once
per hour due to an automated remote monitoring script. Some

non-periodic bursts also occur in the logs. We confirm two signifi-
cant outliers in the figure due to many log appearances (label (a))
and missing periodic logs (label (b)). As non-periodic anomalies
represent failures of automatic remote access login, we intend to
detect these non-periodic anomalies without detecting periodic
bursts. As shown in this figure, CVAE and PCA correctly separate
these anomalous data from others. Furthermore, the burst detection
finds only periodic bursts. CVAE and PCA correctly learn event-
wise features (in this case, periodic appearance) thanks to their
discriminative power.

Sensitivity to phase changes: The periodic patterns of this log
appearances (i.e., its phase) changes at the 274th day (label (c)). This
phase change is due to the timing shift of a log appearing with the
same frequency; this log appears in five minutes periods. From day
0 to day 273, each log appears almost at the same time and period
(beginning at 0:44 in an hour period). After day 274, the appearance
time shifts though the appearance period is the same (beginning at
0:10 in an hour period).

As shown in the bottom graph of Figure 5, it is difficult for PCA
to detect the state change at the orange line because the values of
reconstruction error seems stable.

On the other hand, CVAE easily detects the change in the behav-
ior at the orange line and DBSCAN correctly separates the data at
this point. Therefore, CVAE is more discriminative to capture the
complex change in time series, which is not detected with PCA.

Robustness against outliers: KLD is robust against the inten-
sity (i.e., number of log appearances) of the original data, as shown
in Figure 3. On the other hand, we confirm that PCA’s reconstruc-
tion errors (not shown in the figure) are also biased to the intensity,
similar to the case with MLH.

Figure 6 (MPLS path down event) shows an example of CVAE’s
sensitivity to a small number of log appearances. The top graph
shows KLD with CVAE, and the bottom graph shows the recon-
struction errors with PCA. The solid blue circles are normal points
and the crosses are anomalies based on DBSCAN clustering. Note
that anomalies in the top graph are clustering results after merging
ten trials, but the KLD values are a result of one trial. These data
have one large outlier (around day 17; label (a)) which has a larger
number of log appearances than other days. As shown in the figure,
PCA is affected by this outlier, and many anomalous points are
not detected. With CVAE, however, the KLD values are relatively
spread compared with reconstruction errors, and DBSCAN detects
other anomalies.

If there are no outliers but logs are noisy, PCA yields many
false anomalies due to its noise-sensitivity. However, as CVAE is
stochastic andmerges themultiple results, we canmitigate the effect
of noises. Therefore, CVAE exhibits better robustness to outliers
and noises than PCA.

However, we also confirm that less than 1% of the data have high
KLD values (> 10−4), as shown in Figure 3. It is still possible that
the clustering process may miss small KLD value changes due to
these high values. We will work to improve this issue by tuning the
clustering process as future work.
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Figure 5: KLD (CVAE) and reconstruction errors (PCA)
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Figure 6: Robustness of CVAE

5.4 Case Studies
We now discuss anomaly examples detected from our proposed
method.

5.4.1 BGP state change. Figure 7 shows the first example of
detected anomalies. In this figure, each mark shows the KLD of
the BGP state change logs from a router per day. Almost all days
have a baseline (≈ 6.0 × 10−6). The detected anomalies in < 100
days are due to changes in network configuration. Furthermore,
checking the raw logs around the 300th day (label (a)), we find that a
connection with one particular AS suddenly became unstable. This
failure had been also reported in a trouble ticket. PCA fails to detect
most of these anomalies. CVAE, on the other hand, successfully
discovers them.

5.4.2 MTU. The next example is MTU reduced logs from a
router. This log template appears in a few days with two specific
variables: multicast or unicast IP addresses. Figure 8 shows the KLD
results. The blue round circles consisting of a baseline indicate no
logs on those days. The orange crosses represent multicast logs,
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Figure 7: Case 1: BGP neighbor state change logs
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Figure 8: Case 2: MTU reduced logs in a router

and green crosses mean some unicast logs appear on those days.
Compared with the baseline, the multicast logs show higher KLD
values (cf. label (a)) and the unicast ones lower (label (b)) ones
as anomalies. Thus, CVAE correctly separates these two types of
anomalies even in this unique log template.We find that PCAmisses
most anomalies annotated by label (a).

6 CONCLUSION
We proposed a log analysis method based on the latent variable
model to detect network system anomalies. We used Conditional
Variational Autoencoder (CVAE) and applied a clustering algorithm
to log time series with KL-divergence of the latent variable distri-
bution. We confirmed that this method correctly works for highly
sparse and diverse time series, which cannot be handled with a tradi-
tional PCA-based method. In addition, our case studies showed that
some detected anomalies are helpful in finding network troubles.
Towards the deployment of our method to real network manage-
ment, we will work on addressing two issues: (1) how to update
the trained model to use upcoming syslog data, and (2) how many
logs are sufficient for catching the normal state in a system.
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