
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018 53

Mining Causality of Network Events in Log Data
Satoru Kobayashi , Kazuki Otomo, Kensuke Fukuda, and Hiroshi Esaki

Abstract—Network log messages (e.g., syslog) are expected
to be valuable and useful information to detect unexpected or
anomalous behavior in large scale networks. However, because of
the huge amount of system log data collected in daily operation,
it is not easy to extract pinpoint system failures or to identify
their causes. In this paper, we propose a method for extracting
the pinpoint failures and identifying their causes from network
syslog data. The methodology proposed in this paper relies on
causal inference that reconstructs causality of network events
from a set of time series of events. Causal inference can filter
out accidentally correlated events, thus it outputs more plausible
causal events than traditional cross-correlation-based approaches
can. We apply our method to 15 months’ worth of network sys-
log data obtained from a nationwide academic network in Japan.
The proposed method significantly reduces the number of pseudo
correlated events compared with the traditional methods. Also,
through three case studies and comparison with trouble ticket
data, we demonstrate the effectiveness of the proposed method
for practical network operation.

Index Terms—Causal inference, log data, network manage-
ment, PC algorithm, root cause analysis.

I. INTRODUCTION

MAINTAINING the stability and reliability of large-
scale networks has been a fundamental requirement

in network management. It is, however, not an easy task in
practical networks because of the highly distributed, ever-
evolving/growing, and heterogeneous nature of practical oper-
ational networks [2]. One effective way to track network status
is to deploy monitoring agents in the network and collect log
information corresponding to a change of system status. In
operational networks, syslog [3] has been widely used for this
purpose. Detailed log messages may provide a better under-
standing of system failures and their causes. Nonetheless, they
are usually understood to be hard for network operators to
identify because of a large amount of log data produced by
a large set of network devices (e.g., routers, switches, and
servers).

To solve this operational problem, various approaches have
been developed to improve the performance of network mon-
itoring and diagnosis using log messages. A simple approach

Manuscript received May 15, 2017; revised September 17, 2017; accepted
November 4, 2017. Date of publication November 28, 2017; date of cur-
rent version March 9, 2018. This work is partially sponsored by NTT. This
paper is an extended version of work published in [1]. The associate editor
coordinating the review of this paper and approving it for publication was
N. Zincir-Heywood. (Corresponding author: Satoru Kobayashi.)

S. Kobayashi, K. Otomo, and H. Esaki are with the Graduate School of
Information Science and Technology, University of Tokyo, Tokyo 113-8654,
Japan.

K. Fukuda is with the National Institute of Informatics and Sokendai, Tokyo
101-8430, Japan.

Digital Object Identifier 10.1109/TNSM.2017.2778096

is to cluster log messages related to a network event (e.g., fail-
ure) into a correlated group and analyze every group in detail.
This approach assumes that the network event can yield a set of
messages from some monitored network devices. One problem
of log analysis is that co-occurrence of log messages does not
always mean causal relations. The timestamp of messages is
helpful in determining the causality, but the correctness of the
timestamp need to be appropriately and accurately analyzed.
Furthermore, network log messages appear more discretely
and sparsely than other evaluation parameters (e.g., CPU or
memory usage), which makes causality of events difficult to
identify in network log analysis.

In this paper, we intend to extract causal relations beyond
co-occurrences in log messages in order to identify important
network events and their corresponding causes. For this, we
first generate a set of time-series data from log messages on
the basis of our preprocessing method. Then, we leverage a
causal inference algorithm, called the PC algorithm [4], [5]
named after Spirtes and Glymour. It outputs directed acyclic
graphs (DAGs) that connect events with causality from a set
of network logs. There are some challenges when applying
causal inference algorithms to the network logs: (1) a large-
scale network consists of multiple vendors’ devices, and many
types of messages appear in the set of logs: (2) messages
occur discretely and sparsely, so they are not assumed in
causal inference algorithms, and (3) not all detected causal-
ities are necessarily important in the context of network
management.

To overcome these technological challenges, we propose
a mining algorithm built on the causal inference. We apply
our proposed algorithm to 15 months’ worth of long sys-
log messages, 34 million messages in total, collected from
a nationwide research and education network in Japan [6].
We obtain a reasonable number of causal edges with lower
false positive rates than a commonly used traditional cross-
correlation based method. Furthermore, we design simple
heuristics that suppress commonly appearing causality and
highlight uncommon causal relationships. Through case stud-
ies and a comparison with trouble ticket data, we demonstrate
the effectiveness of our proposed approach.

The contribution of this paper is twofold: (1) we propose a
log-mining system based on causal inference for log data of
highly complicated networks (Sections III and IV), i.e., a wide
variety of log messages sparsely generated by heterogeneous
network devices: and (2) after careful validations (Section VI),
we show that our proposed method can report meaningful
events, sufficiently suppressed into a reasonable number for
operators to read, with causal relations from a huge number
of log messages (Section VII), which is practically useful for
daily network operation.

1932-4537 c© 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1017-0938

54 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

II. RELATED WORK

Prior literature has been devoted to automated troubleshoot-
ing and diagnosis with system logs. Automated system log
analysis has contributed to solve various problems (e.g.,
system failures [7], [8] and security threats [9], [10]). Some
works have conducted contextual analysis of log data to
retrieve useful information in troubleshooting for network
management. Contextual log analysis can be classified into
four groups: model, spatial, relational, and co-operative
approaches.

The model approaches present system changes behind log
events as some models, especially state transition models.
Salfner and Malek [11] use a hidden semi-Markov model
for failure prediction. Yamanishi and Maruyama [12] analyze
system logs with a multidimensional hidden Markov model.
Beschastnikh et al. [13] generate finite state machines from
execution traces of concurrent systems to provide insights into
the system for developers. Fu et al. [14] generate decision
trees of system state transition from program logs for dis-
tributed debugging. Generally, these approaches enable us to
understand system behaviors and to predict failures in the near
future.

Spatial approaches present log events in multidimensional
space and analyze them with classification techniques.
Kimura et al. [15] characterize network faults in terms of
log type, time, and network devices with a tensor analy-
sis of system logs. Sipos et al. [16] use a multi-instance
learning approach to extract system failures from system
logs. Fronza et al. [17] predict system failures by classify-
ing log events on the basis of support vector machines. These
approaches are especially useful for fault localization.

Relational approaches extract relations of time-series of
events. The detected relations are used for further analyses
like a graph approach, and are especially useful for fault diag-
nosis. Root cause analysis with system logs has also been a
hot topic in the context of network management. A common
approach is to infer causal relations among events in system
logs. Zheng et al. [18] detect correlated events in system logs
in a supercomputer system and remove pseudo correlations
with conditional independence. Nagaraj et al. [19] gener-
ate dependency networks [20] (similar to Bayesian networks)
of events in system logs. These approaches are not effec-
tive for sparse data, like system logs of network devices,
because they use a probabilistic method to find conditional
independence. Mahimkar et al. [21] take an approach to extract
failure causality from correlations. They use multiple regres-
sion coefficients, but this approach requires large processing
time for a large number of events. Some approaches estimate
causal relations without causal inference.

Some studies use different approaches to detect root causes
of trouble in system logs. Tak et al. [22] generate reference
models, explaining dependencies of events, by a heuristic-
based method for cloud system logs. They effectively use
domain knowledge of the cloud system, which is usually not
available for other applications. Lou et al. [23] estimate causal
relations with heuristic-based rules of timestamps and mes-
sage variables. They largely rely on heuristics of log event
dependence, which is difficult to generalize.

Co-operative approaches depend on not only system logs
but also other datasets. Yuan et al. [24] pinpoint errors in
source code by matching a function call graph with error log
messages. Scott et al. [25], [26] troubleshoot software defined
network control software on the basis of causal relations esti-
mated with external causal inference tools. These approaches
need the external data to be available on the systems.

Our work in this paper is categorized into the relational
approaches based on causal inference. However, existing work
has used much resource to estimate causal relations. We pro-
pose an efficient causal inference algorithm based on graph
approaches on system logs.

Closer to our work, Zheng et al. [18] leverage causal infer-
ence on pinpointing root causes of network events. The main
difference from ours is how to apply causal inference; they
search conditional independence heuristically to decrease pro-
cessing time. In that way, one can find only a part of causality
among log events that is enough for determining root causes.
In contrast, our approach investigate all the causal relations
because edges not indicating root causes will also help system
operators understand the system behavior as shown in our case
studies.

In this paper, we use the PC algorithm [4], [5], which is
a method to estimate directed acyclic graphs (DAGs) from
statistical data on the basis of conditional independence. In
the field of network measurement, Chen et al. [27] also use
this algorithm. They generate causality graphs of network
events from some monitored parameters such as RTT and
TCP window size. System log messages occur more discretely
and sparsely than these parameters. This difference requires
elaborate preprocessing methods.

III. CAUSAL INFERENCE

The key idea of our proposal is to detect causality of two
given events in the network logs. The causality is a partial
order relationship different from correlation, which is typi-
cally quantified by a correlation coefficient. Using correlation
as causality yields many false positives because a positive cor-
relation between two events does not always mean causality.
Checking timestamps of two correlated events is helpful in
determining causality, but the timestamp of system logs is not
always reliable for determining causal directions due to NTP’s
time synchronization error, jitter, and network failures. Thus,
we need to estimate causal directions among events without
timestamps, in theory. Such algorithms have been developed in
the field of causal inference. In this section, we introduce PC
algorithm [4], [5], a generalized causal inference algorithm, to
infer causal relationships from a set of events.

We first introduce the concept of conditional independence.
Conditional independence is a key idea to reveal causality from
correlation. Assume that there are three events: A, B, and C.
A and B are conditionally independent for given C if

P(A, B | C) = P(A | C)P(B | C), (1)

where the events A and B are independent as long as C appears.
If A and B have a causality with C, A and B are independent
because they always occur with C. In other words, a correla-
tion between A and B is eliminated by considering the related

KOBAYASHI et al.: MINING CAUSALITY OF NETWORK EVENTS IN LOG DATA 55

Fig. 1. Causal inference in the PC algorithm.

event C. Note that C can represent multiple events. If A and
B are conditionally independent for given C, we can consider
that A and B have no causality, because their relation is indi-
rect across C. With the idea of conditional independence, we
can remove pseudo causality (i.e., false positives) in this way.

The PC algorithm [4], [5] is a graph-based method to
reconstruct causal relationships among nodes with conditional
independence. For efficient processing, it assumes that nodes
form no loops of edges in the estimated graph. Here, its out-
put causality graph is a DAG of events corresponding to the
causality of events. The PC algorithm consists of four steps
(see also Figure 1).

1) Construct a complete (i.e., fully connected) undirected
graph from nodes (events).

2) Detect and remove edges without causality by checking
conditional independence.

3) Determine edge direction on the basis of V-structure.
4) Determine edge direction with orientation rule.
In the first two steps, we estimate a skeleton graph that is an

undirected causality graph with the idea of causal inference.
For testing conditional independence in step 2, we first cut
edges (say A− B) the nodes of which are conditionally inde-
pendent without another additional node, i.e., this is a special
case of Equation 1 similar to the usual correlation coefficient.
We then check the remaining edges (A − B) by conditional
independence with additional nodes (C) that connect to the
two nodes (A and B) using Equation 1. We remove the edge
if at least one of the other nodes holds the conditional inde-
pendence. Repeating this process, we find out which edges
indicate some causal relations among all nodes.

In the latter two steps, we determine directions of the
detected edges with two rules. In step 3, a V-structure is a con-
dition to decide on the direction of an edge. Let three nodes
(events) U, V , W be a part of a graph U−V−W. U and V are
correlated, and V and W are correlated. One obtains a causal
relationship U → V ← W if U and W are not conditionally
independent for V . This V-structure is a rule to infer causality
(arrow) in an undirected graph. In step 4, the orientation rule
prevents a loop being made among events by the definition of
DAG [28]. Some edges can be undirected even after applying
the PC algorithm if one does not have enough information to
determine edge directions.

In practice, the PC algorithm has some variations. The
original-PC [4] has a problem that output depends on the order
of input data. In contrast, stable-PC [29] is order-independent

Fig. 2. Processing flow.

although it takes longer processing time. Parallel-PC [30]
requires shorter processing time with parallel processing. In
addition, the PC algorithm has been extended to improve its
accuracy [31]. In this paper, we use the stable-PC algorithm
to generate DAGs from system logs.

IV. METHODOLOGY

To detect root causes of network events in system logs, we
intend to infer causal relations among log events obtained at
an operational network. Here, we first provide an overview of
the proposed system and then describe in detail preprocessing,
calculation of conditional independence, and postprocessing.

A. System Overview

This section briefly introduces the processing flow of our
log mining algorithm (see also Figure 2).

First, we generate a set of input time-series of the PC
algorithm with some preprocessing techniques: log template
generation to translate messages into time-series, and periodic
event filtering to reduce detected relations of invaluable events
for troubleshooting (Section IV-B). Next, we apply the stable-
PC algorithm [29] to the time-series. In this step, we discuss
two conditional independence testing methods in the PC algo-
rithm (Section IV-C). As a result, we obtain DAGs with nodes
of event time-series and edges of causal relations. For practical
use, we use a postprocessing technique after the PC algorithm
to focus on abnormal behaviors in the system (Section IV-D).

B. Preprocessing

To apply PC algorithm to log data, there are two issues to
be carefully considered.

First, raw log messages cannot be analyzed directly with
statistical approaches because they are string, not numeric.
Log messages consist of timestamps, source hostnames, and
partially formatted messages. For input of the PC algorithm,
we generate a set of time series corresponding to each event
from the raw log messages obtained from one network device.

Second, the distribution of log appearances is long-tailed;
some events, like daily processes, appear much more fre-
quently than others, like error logs. This difference in
frequency greatly affects the PC algorithm. Indeed, the PC
algorithm detects more edges from frequent events while hid-
ing important relations of minor events. To avoid this, we
remove events that appear frequently but are less important
in troubleshooting.

56 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

Fig. 3. Example of log template.

To overcome the two problems, we apply the following
preprocessing to a set of log messages. First, we extract log
templates from the original log messages except timestamps
and source hostnames. The log template is a log format the
variables of which (e.g., IP address, port) are replaced by a
wild card (*); it is a standard (i.e., comparative) format of log
messages. Figure 3 is an example of a log message and the
corresponding log template. In this example, variables such as
process ID, user name, IP address, port number and protocol
name are replaced by wild cards. There have been many log
template generation algorithms for log messages [32]–[35].
We use a supervised learning-based log template generation
algorithm [35]. This algorithm requires manually annotated
training data but generates more accurate log templates than
other clustering-based algorithms because they tend to fail to
classify minor logs, which are still important in causation min-
ing for troubleshooting. The supervised algorithm [35] largely
solves this problem. We use a set of templates that are manu-
ally checked after applying the algorithm. We finally extracted
1, 789 templates from 35M log messages in our dataset (see
also Section V). More examples of generated log templates
are also shown in Figure 13, Figure 15 and Figure 17. Next,
we construct a set of event time series generated by each log
template per device (router or switch) from all log data. In
other words, each time series contains the number of appear-
ances of one log template from one device in a disjointed
(non-overlapping) time bin (size b, ghich we use for 60s). The
generated time series depends on the conditional independence
test method (see Section IV-C). We discuss the parameter
dependency of bin size b and its overlaps for the edge detection
in Section VI-C.

We then remove a large number of unrelated event time
series indicating strong temporal periodicity. Such a periodic
log template represents regular daily events caused by an event
timer (e.g., cron) and would be a source of misdetection of
the causality. However, a periodic event often contains outliers
that do not follow its whole periodicity. As these outliers are
also expected to be important for troubleshooting, we leave
them in time series after removing periodic events. For this
purpose, we use following two methods: a Fourier analysis
and a linear regression analysis.

First, we find periodic events with the Fourier analysis. If a
given time-series f (t) of N length with a time bin (size bf) is
periodic, its power spectrum is characterized by equally spaced
peaks. The power spectrum A of the time-series is defined as
Ak = |∑N−1

n=0 f (n)e−2iπ nk
N | (k = 0, 1, . . . , N−1). We pick up

the first � peaks of the power as the candidates of the following
investigation (empirically, we set � = 100). Let the intervals
of each peak P, f (t) be considered as periodic if σ(P)

P̄
< thp

where σ(P) is the standard deviation of P, and P̄ is its average
(we use 0.1 as thp). This condition intuitively indicates that

the intervals of all peaks are equally distributed if σ(P) is
sufficiently smaller than its average. Thus, if the peaks P of
Ak meet this condition, the given time-series f (t) is considered
as periodic.

Then, we construct residuals in periodic events with inverse
Fourier transform. As a periodic component of f (t) is
presented in the peaks of power spectrum Ak, the residual
component A′ is presented as Ak for Ak � thamax(A), and 0
otherwise. This component cuts off peaks (i.e., periodic com-
ponent) by threshold tha (we use 0.4 as tha). Then we obtain
the inverse Fourier transform g(t) of A′. Here, the residual time
series h(t) is presented as f (t) for f (t) >

g(t)
2 , and 0 otherwise.

Next, we find missing periodic events with a linear regres-
sion analysis. In our preliminary analysis, we found that the
Fourier analysis misses periodic events of short intervals or
non-fixed intervals with noise. The cumulative time series of
these quasi periodic events is an approximately linear increase.
Thus, we compare the time series f (t) to its linear regression
l(t) = tm

N where m =∑N−1
t=0 f (t). The time series is considered

as periodic events if
∑N−1

t=0
(f (t)−l(t))2

mN < thl. The left side is
an index of the difference between the time series and its lin-
ear regression, and we compare the index with the threshold
thl to judge whether the difference is small enough (we use
0.5 as thl). With this method, we find out which time series
sufficiently fits its linear regression. This method cannot find
periodic events of large intervals but works well with Fourier
analysis because these two methods mutually compensate for
their disadvantages.

C. Calculation of Conditional Independence

Here, we discuss how to calculate the conditional indepen-
dence for the PC algorithm. As described in Section III, the
PC algorithm tests conditional independence of nodes X and
Y with another node Z. One can consider two methods for
testing conditional independence: G-square test (discrete) [36]
and Fisher-Z test (continuous) [36]. Other methods (like
using probabilistic causality theory [18]) are not reasonable
to use in the PC algorithm because they usually require
extra information for processing (like time-series order of
events).

1) G-Square Test: The G-square test is a method to evaluate
conditional independence of binary (consisting of zero and
one) or multi-level data. This method is a natural extension
of a chi-square test and is based on information theory, using
cross entropy. The G-square statistic G2 is defined as:

G2 = 2mCE(X, Y | Z), (2)

where m is the data length and CE(X, Y | Z) is a condi-
tional cross entropy of event time series X, Y , and Z (i.e.,
x(t), y(t), and z(t)). We check a p-value of the null hypothesis
of the test with a threshold p = 0.01. For the G-square test,
we use a binary event time series generated from the origi-
nal event time series by converting each value for x(t) � 1
into x(t) = 1.

The conditional cross entropy is calculated from the count
of each value in the input data. Assume that the probability is
P(i, j | k) and the count of t is Sijk where x(t) = i, y(t) = j, and

KOBAYASHI et al.: MINING CAUSALITY OF NETWORK EVENTS IN LOG DATA 57

Fig. 4. Input time series for two conditional independence tests.

Fig. 5. Preprocessing: event reduction.

z(t) = k. Here, the G-square statistic G2 can be transformed
as follows:

G2 = 2m
∑

ijk

P(i, j | k)log
P(i, j | k)

P(i | k)P(j | k)

=
∑

ijk

2Sijklog
SkSijk

SikSjk
. (3)

This property enables the G-square test to calculate faster, but
also limits the format of input data to binary.

2) Fisher-Z Test: The Fisher-Z test evaluates conditional
independence on the basis of Pearson’s correlation coeffi-
cient. This test is a combination of two statistical techniques:
Fisher-Z transformation to estimate a population correlation
coefficient, and a partial correlation to evaluate the effect of
other nodes. The statistic Zs is defined as:

Zs =
√

m− |Z| − 3

2
log

1+ r

1− r
, (4)

where m is the size of time series, r is partial correlation of X
and Y given Z, and |Z| is the number of nodes to consider with
X and Y . Zs statistic corresponds to a standard normal distri-
bution for r = 0. We check the p-value of the null hypothesis
of the test with a threshold p = 0.01.

Compared with the G-square test, Fisher-Z has an advantage
in terms no constraint for the input data. For log analysis, we
consider the number of events in each bin.

Recall that, by the nature of the two conditional indepen-
dence methods (binary or continuous), the input time series
for the PC algorithm must be different for the G-square and
Fisher-Z tests as shown in Figure 4.

D. Postprocessing

The output of the PC algorithm is a set of causalities.
However, the PC algorithm does not provide any information
on the importance of events. Thus, we require a further step

Fig. 6. Preprocessing: edge reduction.

TABLE I
CLASSIFICATION OF LOG MESSAGES

to filter commonly detected (or uninteresting) causality from
the provided information for operators.

In this study, we simply count the number of appearances of
frequently appearing edges, because of the long-tailed nature
of log message appearance; i.e., the same edges appear in
many devices over time. Thus, we remove frequently appear-
ing edges with a threshold for easily identifying unusually
important causality. Note that this postprocessing is supposed
to affect only the superficial notifications for operators. We
discuss the effect of the postprocessing in Section VII-B.

V. DATASET

To evaluate the effectiveness of our approach in the previous
section, we use a set of backbone network logs obtained from a
Japanese research and educational network (i.e., SINET4 [6])
that connects over 800 academic organizations in Japan. This
nationwide network consists of 8 core routers, 50 edge routers,
and 100 layer-2 switches composed of multiple vendors. A
centralized database stores all syslog messages generated by
the network devices in SINET4, though some messages can
be lost in the case of link failures. Each message contains
additional information such as timestamp and source device
name (or IP address) based on a syslog protocol. We analyze
456 day-long consecutive logs composed of 35M log messages
from 2012-2013.

To easily understand log messages for pinpointing events
and their root causes, we manually label event types to the
generated log templates as listed in Table I. System logs
from network devices are classified into six groups: System,
Network, Interface, Service, Management, and Monitor.
System shows internal processes of devices, like operating
system and hardware modules. Network is linked to some
protocols for communication. Interface provides the status

58 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

of physical or virtual network interfaces. Service consists
of network services provided to other devices, like NTP.
Management corresponds to configuration changes by oper-
ators. Monitor contains functions that monitor system behav-
iors, like SNMP and syslog. Also, we separately introduce
some external groups related to frequently used protocols and
services.

In the table, the column “#messages” represents the number
of raw log messages, “#preprocessed” is the number of pro-
cessed messages (after the preprocessing), and “#templates” is
the number of identified log templates. We see major log mes-
sages are System events. These groups are related to repeatedly
reported events like cron. Management also has a large number
of log templates because this group consists of configuration
change events that record various settings in the messages.
Also, the numbers of log templates of VPN and Routing are
larger than the event appearances of the groups. It is reasonable
that these protocols output messages only when the configura-
tions or states are changed. The template generation algorithm
outputs 1, 789 log templates.

In addition, we check a set of trouble tickets issued by
SINET network operators. This data consists of a date and
a summary of an event, though it only covers large network
events. We use this data for evaluating the detection capability
of our proposed algorithm (Section VII-D).

The network consists of a large number of network devices,
so we divide the data into eight subsets corresponding to a
sub network with one core router, edge routers, and switches
connected to the core router. We analyze every one-day-long
log data in the dataset because we target short-term causality
instead of long-term causality. We will discuss this window
size dependency on Section VI-D. Finally, we generate 3,648
DAGs (456 days and 8 network subsets) from the entire
dataset.

VI. VALIDATION

In the previous section, we described a series of tech-
niques to extract causal relations from system logs. We still
have some challenges to consider in practical use through
these techniques, like conditional independence test methods
and parameters. Here, we investigate the appropriateness of
preprocessing (Section VI-A), the difference between condi-
tional independence tests (Section VI-B), and the parameter
dependencies (Section VI-C and Section VI-D). In addition,
we validate the possible false positives of the PC algorithm
(Section VI-E).

For the experiments, we use a computer with an Ubuntu
16.04 server (x86_64) equipped with Intel(R) Xeon(R)
X5675 (3.07GHz) and 48GB memory. The implementa-
tion of our proposed method can be downloaded from
https://github.com/cpflat/LogCausalAnalysis.

A. Preprocessing

As mentioned in Section IV-B, we remove periodic events
from the input time-series of PC algorithm in order to reduce
relations of less important events for troubleshooting. Our
preprocessing methods took 173 minutes for processing all

datasets for the 456 days. Here, we investigate the filtered
events and their impacts on the resulting DAGs.

First, we show how our preprocessing helps to reduce of
the number of messages. Figure 5 shows the scatter plot of
the number of events suppressed by the preprocessing and the
number of the original events. Every dot represents an one-day
data. The diagonal is a baseline to indicate no preprocessing.

Our preprocessing reduces the constant number of events
which is independent from the number of input events. Thus,
the method removes regular events that appear every day. This
is not contrary to our intuition because periodic events are
usually regular as long as there are no system changes.

Table I shows the breakdown of the preprocessed messages.
We find that System is mostly removed by preprocessing since
this group includes cron events that work periodically. Service
is also omitted because of frequently appearing NTP syn-
chronization messages. Similarly, Network, Management and
Monitor are largely suppressed. In total, 7% of log messages
are used as input of the PC algorithm. These removed events,
like cron and NTP, are reported much more frequently than
other events and contribute to system troubleshooting in fewer
cases. On the other hand, the events of Interface, VPN, and
Routing are seldomly removed. Their messages represent the
changes of states or configurations, which do not have period-
icity and are important information for troubleshooting. Thus,
our preprocessing techniques definitely remove periodic and
unnecessary events while leaving important events in the input
time-series of the PC algorithm.

Similar to the number of events, we focus on the number
of edges reduced by the preprocessing. Figure 6 shows the
reduction rate of edges with the preprocessing method. We
can see that the preprocessing method removes 70% to 90%
of edges from generated DAGs. Generally, periodic events
likely form more edges than other events because periodic
events with the same interval have a similar event appearance
in their time-series. In addition, such periodic events usually
appeared regularly. Thus, the number of detected edges among
the periodic events is large. However, these relations are not
usually important in troubleshooting due to their constancy.
If the majority of provided information is given to operators,
it will compromise the practical usefulness. This is why we
need preprocessing before the PC algorithm.

B. Difference in Conditional Independence

In Section IV-C, we introduced two reasonable methods to
evaluate conditional independence: the G-square and Fisher-Z
tests. These two methods are different in terms of statistical
basis and input data format, which greatly affect the results
of the PC algorithm. We compare the processing time and the
results of these two conditional independence test methods.

First, we investigate the processing time of the PC algo-
rithm with the two methods. Figure 7 shows the distribution
of processing time of the PC algorithm. In this experiment,
some points are marked as a day (24h) when the processing
did not finish within one day in our environment due to a large
number of events. In Fisher-Z, 7% of the datasets (253 out of
3,648) timed out. Note that timeout does not always occur in

KOBAYASHI et al.: MINING CAUSALITY OF NETWORK EVENTS IN LOG DATA 59

TABLE II
DEPENDENCY OF THE CONDITIONAL INDEPENDENCE METHOD ON THE NUMBER OF DETECTED EDGES

Fig. 7. Processing time of the PC algorithm.

a large dataset. This means the processing time of Fisher-Z
depends largely on the complexity of DAGs (i.e., the number
of edges) rather than the number of events. In contrast, the
PC algorithm processes the event dataset in reasonable time
with the G-square test though the number of events per day
increases faster than linearly.

Next, we analyze the generated DAGs with the two condi-
tional independence methods. Table II shows the number of
detected edges. The Fisher-Z test detected many more edges
than the G-square test. This result suggests that the Fisher-Z
test is a better method for the PC algorithm than the G-square
test in terms of detectability. However, in our manual inves-
tigation, edges that are detected with Fisher-Z but not with
G-square are not useful for troubleshooting because most such
edges provide redundant information. In addition, we obtain
more than 100 times edges without considering conditional
independence (i.e., only correlation), and it is easily expected
that most of these edges are false positives. Here, we need
to examine a quality of generated DAGs (i.e., the number
of redundant or false positive edges) instead of the number
of edges. To investigate the quality of DAGs, we show addi-
tional results with two metrics: global cluster coefficient and
max clique size.

First, we analyze the quality of generated DAGs with a
global clustering coefficient [37]. A global clustering coeffi-
cient is defined as the ratio of triangles to the possible number
of them in a given graph. A large coefficient means that the
conditional independence test cannot cut edges effectively.
Figure 8 shows the distribution of a global clustering coeffi-
cient of generated DAGs. This graph compares four methods:
Fisher-Z and G-square with and without considering condi-
tional independence (only see relations of every two nodes,
corresponding to analyzing not causality but correlation). The
goal of our work is to reveal causality of log events with
small false positives in practice, so the cluster coefficient is

Fig. 8. Clustering coefficient of DAGs generated with the PC algorithm.

Fig. 9. Distribution of max clique size of DAGs generated with the PC
algorithm.

expected to be small enough. Fisher-Z and G-square without
conditional independence generate DAGs with a high cluster
coefficient (close to 1.0). These DAGs form more complete
subgraphs of events that appear closely in time-series. This
means that conditional independence must be considered to
remove false positives in the causality graphs and shows a
crucial limitation of the traditional correlation algorithm. We
can also see that Fisher-Z generates DAGs at least twice as
dense as those of G-square.

Second, we compare the max size of clique (i.e., complete
subgraph) in DAGs, in order to check the quality of DAGs.
Figure 9 shows the distribution of max clique size of generated
DAGs without considering edge directions. This figure also
shows that G-square generates fewer and smaller complete
subgraphs than Fisher-Z. At best, G square forms triangular
subgraphs in DAGs. In contrast, Fisher-Z forms five or more
complete subgraphs, which does not seem useful as causality.

These results indicate that Fisher-Z forms more triangle
edges than G-square. However, the information from such tri-
angle edges actually is redundant in troubleshooting. There are
no reasonable situations where more than three events equally
depend on each other. At least, one triangle edge is an indirect

60 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

Fig. 10. Distribution of size of DAGs.

Fig. 11. The number of false positive edges in a Poisson arrival process.

relation that is a false positive or non-meaningful informa-
tion for system operators. In Figure 8 and Figure 9, edges
that are detected with Fisher-Z but not with G-square form
such edge triangles. Thus, the distinctive edges in Fisher-Z
are not important for troubleshooting in many cases (see also
Section VII-C3, which is a good example that Fisher-Z forms
redundant edges).

It is reasonable to assume Fisher-Z fails to remove false
positive edges well. Fisher-Z requires its input data to be dis-
tributed normally [38]. If the data is large enough like access
logs, Fisher-Z works appropriately. However, our log events
appear sparser in time-series. In this case, Fisher-Z cannot
reject the existence of causality with conditional independence,
leading to leaving more edges in DAGs.

We remark on the processing time in both tests. The PC
algorithm requires longer processing time to search for con-
ditional independence if many edges are left in the skeleton
estimation step. The PC algorithm conducts a recursive search
of conditional independence while increasing the number of
condition nodes. A complete graph is the worst case of this
algorithm that requires O(n

n
2) of computation time (where

n is the number of nodes). According to Figure 9, Fisher-Z
generates some complete subgraphs that are large enough to
lead to combinatorial explosions. This is the main reason for
yielding timeout in Fisher-Z in Figure 7. Thus, we conclude
that G-square is better than Fisher-Z at evaluating conditional
independence if the input dataset is sparse in time-series.

C. Bin Size Dependency

In the previous section, we explained the basic flow of
the processing. However, the performance of the algorithm

depends on the parameter setting. The most important param-
eter in the algorithm is the time bin size b for aggregating
events. Intuitively, larger b should detect more false positive
edges in a causality graph because unrelated events can be
co-located in the same bin. Similarly, smaller b should make
it difficult to detect causality between two events with a cer-
tain delay. In addition, the PC algorithm with smaller b takes
longer processing time because it depends proportionally on
the total number of bins and the dataset size is fixed. Thus,
we need to determine a reasonable size of b in practice. To
investigate the dependency of the bin size b on the number
of detected edges, we carefully observe the outputs of the PC
algorithm for different bin sizes from 10s to 300s.

We first investigate the number of detected edges with non-
overlapping bins of the five different bin sizes. Table III lists
the total number of detected directed and undirected edges
from the dataset. The column (Diff. device) represents the
edges between two different devices. First, we can see that the
number of detected edges is smaller for larger b. The result
seems to differ from our intuition that larger b detects more
false edges. As described in Section IV-C, cross entropy affects
the result of the G-square test. Larger b makes the total num-
ber of bins in a time-series smaller because the dataset size is
fixed to one day. The small number of bins decreases informa-
tion gain, which yields a small cross-entropy value. Also, the
information on the number of the same log templates is not
considered in our binary time series. Thus, the cross entropy
becomes smaller for larger b, resulting in more rejections of
the test. Note that the reduction of edges with larger b does not
mean a higher accuracy of detected edges. Larger b reduces
the edges between incompletely synchronized events, like the
events of different functions. The edges between these events
are likely to be useful in troubleshooting. Second, we find
a decrease in the number of detected edges with smaller b.
In particular, the decrease in the number of undirected edges
between two different devices is clear. This result agrees with
our intuition, because the edges between different devices usu-
ally have a larger delay than the others because of the network
latency.

Next, we discuss overlapping bins. For non-overlapping bins
in the above experiments, we may miss some useful edges if
two causal events are located in neighboring bins. We inves-
tigate the dependency of DAGs on the length of bin overlap.
Here, we fix the bin size b to 60s, which detects a suffi-
cient number of edges with non-overlapping bins, and then
change the overlap length. For instance, if we use 10s over-
lap, a new bin starts at 50s in the current bin. Note that
the number of total bins is larger with overlapping bins than
that with non-overlapping bins. Table III lists the number of
detected edges with bin overlap size 10s and 50s. With 10s-
bin overlap, we detect an almost similar number of edges to
the non-overlapping bin, meaning that the boundary issue is
negligible. In contrast, we find a greater number of edges with
the 50s overlap. In this case, the total number of bins is equal
to that with 10s-bin without overlap. Even compared with that,
we see more edges with the 50s overlap. From the results, we
find two issues to determine b: (1) smaller b to obtain a suffi-
cient information gain, and (2) larger b to detect related events

KOBAYASHI et al.: MINING CAUSALITY OF NETWORK EVENTS IN LOG DATA 61

TABLE III
DEPENDENCY OF BIN SIZE AND OVERLAP ON THE NUMBER OF EDGES

TABLE IV
DETECTED EDGES OF PC ALGORITHM WITH CHANGING BIN

SIZE AND DATA WINDOW SIZE

with a large time lag. Using bins with large overlaps solves
this problem; large bin overlaps increase the total number of
bins for more information gain, and the causal events with a
certain time lag are fit in the bin.

Furthermore, we examine the size of DAGs produced by
the PC algorithm. We focus on connected subgraphs, i.e., con-
sisting of at least two nodes. Figure 10 shows the DAG size
distribution found in all log data; as expected, most DAGs are
small and a few are large. We find that smaller b generates
more connected subgraphs. This is consistent with the previous
result that a larger number of edges is detected for smaller b.
Similarly, we find more connected subgraphs using 60s-bin
with 50s overlap than that using non-overlapping bins of any
sizes. Further investigations on detected large subgraphs iden-
tify two typical behaviors. One is an event that causes multiple
devices to have similar events. For example, if an NTP server
fails its service, all devices output similar log messages about
NTP synchronization error. These events appear at the same
time and construct a large subgraph. In this case, the subgraph
is reasonable as the causal relations in the system logs. The
other behavior is that multiple unrelated events have a com-
mon connected event. This connected event appears frequently
and its causality is false positive.

Over all, these results suggest that we should use a reason-
able size of bin with large overlap. Thus, we use b = 60s with
50s overlap for further analysis (shown in Section VII).

D. Window Size Dependency

In the previous section, we investigated bin size of the input
time-series of the PC algorithm. There is another parameter
for the PC algorithm to consider: the window size of input
time-series. As described in Section V, we divide a dataset
into small ones with a window size to emphasize temporal
relations of events. Also, processing time will greatly increase
without dataset division, because one DAG contains too many
nodes (i.e., events). For these, we use one day long time-series
as the input for the PC algorithm. We need to investigate the
effects of window size on the results of the PC algorithm.

Table IV compares four window sizes in processing datasets
of all 456 days. “Average edges” is the average number of
detected edges in each input data of a given window size.
“Unique edges” is the total number of different edges (i.e.,
edges between nodes of different log templates and different
source devices) in all datasets. We can see that the num-
ber of unique edges is consistent in every window size. This
result indicates that the window size does not largely affect
the detectability of edges. Thus, it is still reasonable to use
one-day-long time-series as an input of the PC algorithm.

E. False Positives

We consider two types of major false positives in the results
of the PC algorithm. One is spurious correlation edges: the
edges between nodes that are correlated but have no cau-
sation. This type of false positive is caused by the failure
of a conditional independence test. We already investigated
this in Section VI-B. The other is falsely connected edges
between accidentally co-occurring events. The PC algorithm
has difficulty distinguishing between truly causal events and
accidentally co-occurring events. Here, we investigate a possi-
bility that two events are accidentally connected by an edge in
the PC algorithm. For synthetic multiple random events with-
out causality, all detected edges are clear false positives by
chance.

We prepare 10, 100, and 1, 000 randomly generated unique
events that occur in accordance with follows a Poisson pro-
cess with different arrival rates. Applying our method to these
surrogate time series (b = 60s), we count the number of edges
detected by the PC algorithm. These edges are all considered
as false positives, because all events are generated indepen-
dently of each other. For 10 unique events (also 100 and
1,000), the maximum number of detected edges among nodes
is 45 (4, 950 and 499, 500), i.e., the worst case.

Figure 11 illustrates the number of falsely detected edges for
different event arrival rates. Each point is the average of 100
trials with unique random events. We can find that the num-
ber of false positives is small and fairly stable over different
arrival rates. The false positive ratios are 1.1% for 10 unique
events, 0.4% for 100 events, and 0.06% for 1,000 events. Thus,
we may find at least about 1% of false edges among events
following Poisson processes.

Events in real datasets may not follow Poisson processes in
many cases. For example, there are events with partially peri-
odic or linear time-series. These events do not clearly follow
Poisson processes, and they form more false positive edges

62 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

TABLE V
CLASSIFICATION OF NEIGHBORING EVENTS OF DETECTED EDGES:

THE PERCENTAGE SHOWS THE RATIO TO ALL EDGES. THE

COLUMN OF DIRECTED SHOWS ONLY THE NEIGHBORING

EVENTS OF DIRECTED EDGES

than random events in our investigation. Here, the prepro-
cessing method to remove periodic or linear time-series is
necessary to decrease false positive edges.

VII. RESULTS

In the previous section, we analyzed the parameter depen-
dency of the algorithm on the number of detected causalities.
This section describes the distribution of detected edges in the
semantic classification (Section VII-A) and the effectiveness of
our postprocessing (Section VII-B). Then we will present three
case studies (Section VII-C) and a comparison with trouble
tickets (Section VII-D) for further detailed understanding.

A. Detected Edges

We first list the classification of detected edges (Table V)
from the preprocessed log messages (Table I) by the PC algo-
rithm. Table V shows the number of neighboring nodes (i.e.,
events) for the detected edges. Here, some edges connect two
different classification types of events, and the major types
are System and Management. These two types are related
to external operative connections, which cause login events
(in Management) and UI process starting events (in System).
This is not contrary to our intuition that remote login events
appear more frequently than other events, because the login
events usually follow the events of management, configura-
tion changes, and troubles to be solved. The types related to
network functions, like Network, Interface, VPN and Routing,
are also major. These events usually affect multiple interfaces,
paths or devices, causing more bases to be provided for the sta-
tistical decision. Our causal analysis is beneficial for analyzing
these network functions.

In addition, we show the number of neighboring nodes of
edges between nodes belonging to the same type. Most of
edges in Routing-EGP (i.e., BGP events) and VPN (i.e., MPLS
events) are included inside their own type (i.e., inner-types).
The processes of network protocols are usually independent
of other processes in normal operation and synchronized to
other ends. Most edges in System and Management are also
included inside their own type (i.e., inner-types). This means
the events of external operative connections, which form most
detected edges, are independent from events of other types.

In contrast, most edges in Network are connected to
other types (i.e., inner-types). Table VI shows the matrix of

Fig. 12. Rank of edges and their number of appearances.

event type combinations of the detected edges. We see that
Network events appear mainly with events of Interface type.
This is because network processes are related to interface
state changes. For example, a network interface error causes
network functions to fail. Some other combinations of event
types, like System & Management, System & Service, and
Network & Routing, are also major. This is because the
combination of System & Management is related to external
operative connections. The combination of System & Service
is mainly the connection of NTP errors and message repeti-
tion alerts. The combination of Network & Routing indicates
the BGP connecting sessions and their communications. Thus,
these edges uncover the fundamental behaviors of the devices.

B. Postprocessing

As described in Section IV-D, some detected edges con-
tain no information regarding the importance of the causality
that may help network operators. These edges appear redun-
dantly in many different DAGs (i.e., datasets of different days),
which prevent operators from finding essential information.
For example, we find more than 10 edges between remote
login events and user interface (UI) startup events every day
in this dataset. These are regular behaviors of the network
devices, and do not usually interest operators. In the spatio-
temporal viewpoint, the edges of the same meanings can
appear frequently for two reasons: one is on different days
and the other is on different pairs of network devices. If some
edges appear much more frequently for these reasons, such
edges are less important for troubleshooting because they show
the regular behaviors of the system.

To evaluate the effectiveness of our postprocessing method
to decrease redundant edges, we investigate the distribution
of detected edges of the same meanings (i.e., edges between
nodes of events with the same log templates). Figure 12 repre-
sents the cumulative sum of such edges detected in all datasets.
The PC algorithm produces 16, 196 edges (= 35.5 edges/day).
The top 5% of edges (42 out of 843 different edges) accounted
for 85% of edge appearances. These edges appear in more
than 35 DAGs, which is frequent enough for operators to con-
sider them as regular behaviors. By manually observing the
appearing edges, we find that most of them show causality

KOBAYASHI et al.: MINING CAUSALITY OF NETWORK EVENTS IN LOG DATA 63

TABLE VI
COMBINATIONS OF TYPES OF EVENTS THAT FORM CAUSAL EDGES. THIS TABLE DOES NOT CONSIDER THE DIRECTIONS OF EDGES

Fig. 13. Detected log templates (Login failure).

Fig. 14. Ground truth and detected causalities (Login failure).

between an input command and its acknowledgment. Thus, we
filter them (with a threshold; 5%) and concentrate on the rest
of them (2, 438 edges = 5.3 edges/day). This postprocessing
takes 20 seconds for all datasets.

Here, we take a look at the distribution of remaining edges
after the postprocessing method, shown in Table V. Monitor
events, consisting of SNMP messages, are likely to provide
more meaningful information than other types. This is not
contrary to our intuition because SNMP events appear with
some unexpected behaviors of devices.

C. Case Studies

To show the effectiveness of the proposed algorithm, we
provide three case studies.

1) Login Failure: The first case is related to login failure
events. A Layer-2 switch A is periodically logged in from
another device X by a monitoring script. In some periods,
device A reported login failure events. During these periods,
we find BGP events in router B, a gateway of A, which causes
a loss of connection. These BGP events are related to two ASes
to which device A belongs. A blackout was actually recorded
in the trouble ticket on the same day. This blackout event
affects the devices related to the two ASes. We can estimate
that this blackout event causes an interface error and a BGP
connection initialization and finally causes login failures.

The log templates detected by the proposed system
are shown in Figure 13. The first two templates

Fig. 15. Detected log templates (Hardware module alert).

(Template ID: 55, 56) are a part of the BGP connec-
tion initialization. The third one (ID: 58) is a failure of
remote login. The fourth one (ID: 107) is related to the
restoration of network interfaces, which means the restart of
devices after the blackout event. The other one (ID: 224) is
a part of the manual operations, which is not directly related
to this blackout. In our data, we observe two events of login
failure and BGP events at the same time of login failure
events for every two related ASes.

Figure 14 shows a plausible manual inference of this failure
(a) and causality graphs generated by using the PC algorithm
using the G-square test (b), and that using Fisher-Z test (c).
In the figures, we manually added labels of events in the
DAGs for readers to easily see their meanings. The DAG (b) is
composed of four edges among the mentioned log templates,
showing the causes of login failure events with allowable
errors. Here, we successfully detect that the login failure events
are caused by the BGP connection initializations. In this DAG,
we can see some edges between a Rt-EGP event and that of
other event types, like Interface and Management. These over-
type edges are more helpful for operators than inner-type ones
that is self-evident in many cases. According to Table VI, these
combinations of event types are seen multiple times in whole
dataset, which means similar helpful edges are detected.

Meanwhile, Fisher-Z test generates a more complicated
DAG (c) that forms many triangles, but this also indicates
the relation of BGP connection initialization and login failure
event. In any case, our method provides useful information so
as to easily understand the behavior of related devices.

2) Hardware Module Alert: The second case is about phys-
ical interfaces on routers. A router is periodically monitored by
a script. In some periods the monitoring command was abnor-
mally terminated, we find a large number of alert messages
about a corresponding physical interface. Also, some BGP
connection initialization events appear before these events.

The detected log templates are shown in Figure 15. The
first two templates (Template ID: 55, 56) are a part of the
BGP connection initialization. These messages are reported

64 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

Fig. 16. Ground truth and detected causalities (Hardware module alert).

Fig. 17. Detected log templates (BGP).

once for four ASes. The third one (ID: 106) is reported when
a child process called by a remote UI is abnormally termi-
nated. (Instead, “UI_CHILD_STATUS” message is output in
a normal situation.) This event appears for several times due
to the retry. The other three templates (Template ID: 1406,
1420, 1423) show a part of the startup processes of the hard-
ware module. The fourth one (ID:1406) looks strange as it
seems not to show any information in its log template, but the
variable is actually equivalent to a fixed word that points to a
hardware module mentioned by others (1420 and 1423).

The BGP events are seen about one minute before the
process termination events and the hardware module events.
We can estimate that the hardware module was abnormally
stopped, causing the initialization of BGP connections, and
then began the starting processes. This trouble was actually
reported in a trouble ticket.

Figure 16 shows a plausible ground truth of this failure
(a), DAG generated by using the PC algorithm using the G-
square test (b), and a part of that using the Fisher-Z test (c).
Our proposed method detects three related edges in (b): one
is between the two BGP events, and the others are among
process termination events and hardware module events. These
edges are slightly different from those of our ground truth. It is
difficult to generate DAGs that an operator expects only on the
basis of their appearance time-series. Still, the information is
helpful for the network operators to understand what happens
in the system. In contrast, Fisher-Z forms a connected DAG
of 70 events with 270 edges. This DAG consists of many
triangle edges, and is too complex for operators to understand
its behavior. This DAG is an example showing Fisher-Z leaves
more false positive edges (discussed in Section VI-B).

3) BGP State Initialization: Here, we introduce a more
complicated failure spanning two devices: an interface error
on a router yields repeated BGP peering connections.

Fig. 18. Ground truth and detected causalities (BGP).

Figure 17 indicates the detected log templates in this failure.
There are two log templates for one router, and five for the
other. IDs 107 and 108 show the network interface error. ID
56 is a report of a BGP state change at the counterpart caused
by the network error. ID 55 is a process of resetting a BGP
connection, which repeats with some unknown causes. IDs 43
and 5 are events derived from a BGP connection resetting,
which appear very differently from others. ID 328 shows a
BGP connection resetting failure, which appears sporadically
on BGP connection resetting process. The root cause of the
connection resetting does not appear in the dataset.

Figure 18 shows a plausible ground truth of this failure
(a) and causality graphs generated by using the PC algorithm
(b), and (c). We again find that the result of our method with
the G-square test is close to the ground truth. Despite some
errors of directions of edges, the DAG helps network operators
to understand the behaviors of devices. Although Fisher-Z also
generate a DAG similar to the ground truth, the DAG has some
redundant edges that connect events of indirect causality.

In summary, we show three cases of trouble with the
detected DAGs. Two of them are recorded in trouble tickets,
and we observed similar types of trouble in the tickets (see
Section VII-D). In addition, we found multiple troubles that
are not recorded in tickets but important for operations like
Section VII-C3 with the PC algorithm. Thus, our method is
useful for various practical situations of troubleshooting.

D. Comparison With Trouble Tickets

We compare the detected events by the proposed algorithm
to the trouble tickets data consisting of spatio-temporal infor-
mation on failure events. The granularity of the events in the
tickets is much larger than that of the syslog data. The ticket
data contains 227 failure events in a year. The number of the
syslog messages is 28, 194, 935 in this period. We do not find
any raw log messages regarding for 39 failures out of 227
failures.

Here, we further investigate the 188 failures regarding mes-
sages. Table VII shows the number of tickets for which our
proposed algorithm provides related information for the tick-
ets. This table is divided by the event types that are the
most related to each tickets. There are some major types in
tickets, like Routing and System. These types correspond to
communication failures and hardware errors.

The PC algorithm successfully detected the related infor-
mation for some types, like Routing and VPN. These events
likely appear multiple times because they record log messages

KOBAYASHI et al.: MINING CAUSALITY OF NETWORK EVENTS IN LOG DATA 65

TABLE VII
THE NUMBER OF TROUBLE TICKETS THAT IS ASSOCIATED WITH

DETECTED EDGES IN OUR ALGORITHM

in multiple steps and their failure can affect multiple paths.
Such events give enough information sources to estimate the
relations for the PC algorithm. For example, the trouble men-
tioned in Section VII-C1 is related to a ticket of Routing.
There are 12 messages in 6 different events clearly related to
the trouble. In the generated DAG, four edges are detected
among five of the six related events. In this case, our method
extracts the most of the information in the log data.

On the other hand, less information is provided for System.
The events of System are likely to appear only once or a few
times. Their causality is difficult to determine statistically with
such events. Section VII-C2 is a minor case in which some
edges are detected for the ticket of System. There are more
than 1,000 alerts in a short time related to this trouble. We
detected only a part of its behavior.

In total, 74% of tickets can be associated with some detected
edges. Thus, our proposed method reasonably managed to
detect large events recorded in the trouble tickets, when the
related log messages are successfully recorded.

VIII. DISCUSSION

We show the effectiveness of our proposed approach to
detect the causality of failure events. The PC algorithm with
G-square detects more effective DAGs than that with Fisher-Z
in the troubleshooting in the case studies. Also, the conven-
tional correlation-based methods have a problem that a large
number of false relations hide specifically important informa-
tion. In contrast, the PC algorithm successfully reduces false
positives from detected edges, which also reduces operators’
tasks for troubleshooting. Thus, we can say that our proposed
method contributes to improve network system management.

We observe a case when the edge direction is different from
our intuition in Section VII-C. The PC algorithm determines
edge directions only with the rules derived from the defini-
tion of DAG, so our method cannot determine directions of
all edges. For obtaining more appropriate results, we should
additionally use timestamp information in the original data.
In this case, we should carefully treat two events from dif-
ferent devices because of communication latency and time
synchronization.

We also reveal that G-square processes conditional inde-
pendence tests faster than Fisher-Z in log data. Fisher-Z takes
more than one day to process one-day-long time-series in some
cases (7% of datasets), which impairs continuous availability
in real-time operations. Some existing works [18], [21] usually
use statistical methods based on Pearson correlation as well

as Fisher-Z test. These existing studies also have a potential
problem in terms of processing time and usually aim to diag-
nose related events of particular trouble. Unlike the existing
work, our method based on G-square contributes to enable not
only diagnosing but also mining causal relations to construct
a knowledge base for further analysis.

Preprocessing before applying the PC algorithm is an
important step for obtaining appropriate results. According to
Section V, 93% of the original messages are inadequate for
the analysis because of their periodicity. We previously [1]
used a preprocessing technique based on an auto-correlation
coefficient with lag. We found that this technique has three
problems. First, the technique requires candidates of fixed peri-
odicity intervals. Second, it removes all outliers in periodic
time-series that would be important for troubleshooting. Third,
it cannot remove periodic events with non-fixed intervals with
noise. We found that our new method definitely removes peri-
odic events but leaves events that are more important for
system operators. Similarly, we divided original messages into
temporal-spatial subsets to avoid detecting false causal rela-
tions. In fact, we find that there are no reported network-wide
failures even in a large disaster case [39]. Similarly, the recent
literature points out that failures are isolated in time and space
for many cases in a global scale network [2].

Postprocessing is also a crucial step to pinpoint the target
events because the PC algorithm detects causality but does
not provide any importance on network operation. Our study
relies on the simple heuristics to remove frequently appearing
edges. However, as causal inference and anomaly detection are
orthogonal, we plan to combine the current heuristics with a
more sophisticated method to highlight the important events.

Comparing the detected results to the trouble tickets, we
find that our proposed method detects edges related to most of
the tickets. The proposed algorithm especially detected edges
of events involving communications to other devices. These
events incur much cost for system operators to locate the root
causes if they fail. Thus, we may say that our proposed method
is helpful in improving the daily network operation. In fact,
network operators cannot easily identify the cause of login
failures shown in the case studies.

In practical situations, operators require failure information
as soon as possible. The current methods are not the best for
real-time processing due to a lack of incremental updates of
the PC algorithm. In our experiment, the average processing
time for generating DAGs is 50 seconds in Figure 7. However,
the processing time depends on the complexity of a dataset. In
other words, it takes longer, over 600 seconds, if some trouble
happens that causes various alerts. For real-time processing,
we need a combination our method with other methods such
as fault localization techniques.

IX. CONCLUSION

In this paper, we propose a method to mine causality
of network events from the large amount of heterogeneous
network log messages. The key idea in this paper is the lever-
aging of the PC algorithm that reconstructs causal structures

66 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 15, NO. 1, MARCH 2018

from a set of time series of events. We find that the PC algo-
rithm can output more appropriate events by removing pseudo
correlations by conditional independence. Furthermore, our
pre- and post-processing steps are helpful in providing a small
set of important events that have causality to the network
operators. Through three case studies and a comparison with
trouble ticket data in the paper, we highlight the effective-
ness of the proposed algorithm using 15 months’ worth of
syslog data obtained from a Japanese research and educa-
tional network. For a part of our future work, we plan to
further evaluate our method with other network data such as
SINET5 [40].

ACKNOWLEDGMENT

The authors thank the SINET operation team for providing
them the syslog and trouble ticket data. The authors would like
to thank Johan Mazel, Romain Fontugne, and Keiichi Shima
for comments on this paper.

REFERENCES

[1] S. Kobayashi, K. Fukuda, and H. Esaki, “Mining causes of network
events in log data with causal inference,” in Proc. IEEE IM, Lisbon,
Portugal, 2017, pp. 45–53.

[2] R. Govindan, I. Minei, M. Kallahalla, B. Koley, and A. Vahdat, “Evolve
or die: High-availability design principles drawn from Google’s network
infrastructure,” in Proc. ACM SIGCOMM, 2016, pp. 58–72.

[3] R. Gerhards, “The syslog protocol,” Internet Eng. Task Force, Fremont,
CA, USA, RFC 5244, 2009.

[4] P. Spirtes and C. Glymour, “An algorithm for fast recovery of sparse
causal graphs,” Soc. Sci. Comput. Rev., vol. 9, no. 1, pp. 62–72, 1991.

[5] M. Kalisch and P. Bühlmann, “Estimating high-dimensional directed
acyclic graphs with the PC-algorithm,” J. Mach. Learn. Res., vol. 8,
pp. 613–636, Mar. 2007.

[6] S. Urushidani et al., “Highly available network design and resource
management of SINET4,” Telecommun. Syst., vol. 56, no. 1, pp. 33–47,
2014.

[7] T. Kimura, A. Watanabe, T. Toyono, and K. Ishibashi, “Proactive failure
detection learning generation patterns of large-scale network logs,” in
Proc. IEEE CNSM, Barcelona, Spain, 2015, pp. 8–14.

[8] E. Chuah et al., “Diagnosing the root-causes of failures from cluster log
files,” in Proc. IEEE HiPC, 2010, pp. 1–10.

[9] A. Ambre and N. Shekokar, “Insider threat detection using log analysis
and event correlation,” Procedia Comput. Sci., vol. 45, pp. 436–445,
Mar. 2015.

[10] Z. Li and A. Oprea, “Operational security log analytics for enterprise
breach detection,” in Proc. IEEE SecDev, Boston, MA, USA, 2016,
pp. 15–22.

[11] F. Salfner and M. Malek, “Using hidden semi-Markov models for effec-
tive online failure prediction,” in Proc. IEEE SRDS, Beijing, China,
2007, pp. 161–174.

[12] K. Yamanishi and Y. Maruyama, “Dynamic syslog mining for network
failure monitoring,” in Proc. ACM KDD, 2005, pp. 499–508.

[13] I. Beschastnikh, Y. Brun, M. D. Ernst, and A. Krishnamurthy, “Inferring
models of concurrent systems from logs of their behavior with CSight,”
in Proc. ICSE, 2014, pp. 468–479.

[14] Q. Fu, J.-G. Lou, Y. Wang, and J. Li, “Execution anomaly detection in
distributed systems through unstructured log analysis,” in Proc. IEEE
ICDM, Miami, FL, USA, 2009, pp. 149–158.

[15] T. Kimura et al., “Spatio-temporal factorization of log data for under-
standing network events,” in Proc. IEEE INFOCOM, Toronto, ON,
Canada, 2014, pp. 610–618.

[16] R. Sipos, D. Fradkin, F. Moerchen, and Z. Wang, “Log-based predictive
maintenance,” in Proc. ACM KDD, 2014, pp. 1867–1876.

[17] I. Fronza, A. Sillitti, G. Succi, M. Terho, and J. Vlasenko, “Failure
prediction based on log files using random indexing and support vector
machines,” J. Syst. Softw., vol. 86, no. 1, pp. 2–11, 2013.

[18] Z. Zheng, L. Yu, Z. Lan, and T. Jones, “3-dimensional root cause
diagnosis via co-analysis,” in Proc. ICAC, 2012, pp. 181–190.

[19] K. Nagaraj, C. Killian, and J. Neville, “Structured comparative analysis
of systems logs to diagnose performance problems,” in Proc. NSDI,
2012, pp. 1–14.

[20] D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and
C. Kadie, “Dependency networks for inference, collaborative filter-
ing, and data visualization,” J. Mach. Learn. Res., vol. 1, pp. 49–75,
Oct. 2000.

[21] A. A. Mahimkar et al., “Towards automated performance diagnosis in
a large IPTV network,” in Proc. ACM SIGCOMM, 2009, pp. 231–242.

[22] B. C. Tak, S. Tao, L. Yang, C. Zhu, and Y. Ruan, “LOGAN: Problem
diagnosis in the cloud using log-based reference models,” in Proc. IEEE
IC2E, Berlin, Germany, 2016, pp. 62–67.

[23] J.-G. Lou, Q. Fu, Y. Wang, and J. Li, “Mining dependency in distributed
systems through unstructured logs analysis,” ACM SIGOPS Oper. Syst.
Rev., vol. 44, no. 1, pp. 91–96, 2010.

[24] D. Yuan et al., “SherLog: Error diagnosis by connecting clues from run-
time logs,” SIGARCH Comput. Archit. News, vol. 38, no. 1, pp. 143–154,
2010.

[25] C. Scott et al., “Troubleshooting blackbox SDN control software with
minimal causal sequences,” in Proc. ACM SIGCOMM, Chicago, IL,
USA, 2014, pp. 395–406.

[26] C. Scott et al., “Minimizing faulty executions of distributed systems,”
in Proc. NSDI, Santa Clara, CA, USA, 2016, pp. 291–309.

[27] P. Chen, Y. Qi, P. Zheng, and D. Hou, “Causeinfer: Automatic and dis-
tributed performance diagnosis with hierarchical causality graph in large
distributed systems,” in Proc. IEEE INFOCOM, Toronto, ON, Canada,
2014, pp. 1887–1895.

[28] T. Verma and J. Pearl, “An algorithm for deciding if a set of observed
independencies has a causal explanation,” in Proc. UAI, Stanford, CA,
USA, 1992, pp. 323–330.

[29] D. Colombo and M. H. Maathuis, “Order-independent constraint-
based causal structure learning,” J. Mach. Learn. Res., vol. 15, no. 1,
pp. 3741–3782, 2014.

[30] T. Le et al., “A fast PC algorithm for high dimensional causal discovery
with multi-core PCs,” IEEE/ACM Trans. Comput. Biol. Bioinformat.,
vol. 13, no. 9, pp. 1–13, Jul. 2014.

[31] J. Abellán, M. Gómez-Olmedo, and S. Moral, “Some variations on the
PC algorithm,” in Proc. PGM, 2006, pp. 1–8.

[32] R. Vaarandi, “A data clustering algorithm for mining patterns from event
logs,” in Proc. IEEE IPOM, Kansas City, MO, USA, 2003, pp. 119–126.

[33] A. A. O. Makanju, A. N. Zincir-Heywood, and E. E. Milios, “Clustering
event logs using iterative partitioning,” in Proc. ACM KDD, Paris,
France, 2009, pp. 1255–1264.

[34] M. Mizutani, “Incremental mining of system log format,” in Proc. IEEE
SCC, Santa Clara, CA, USA, 2013, pp. 595–602.

[35] S. Kobayashi, K. Fukuda, and H. Esaki, “Towards an NLP-based log
template generation algorithm for system log analysis,” in Proc. CFI,
2014, pp. 1–4.

[36] R. E. Neapolitan, Learning Bayesian Networks. Upper Saddle River, NJ,
USA: Prentice-Hall, 2004.

[37] D. J. Watts and S. H. Strogatz, “Collective dynamics of ‘small-world’
networks,” Nature, vol. 393, pp. 440–442, Jun. 1998.

[38] N. Harris and M. Drton, “PC algorithm for nonparanormal graphical
models,” J. Mach. Learn. Res., vol. 14, no. 1, pp. 3365–3383, 2013.

[39] K. Fukuda et al., “Impact of Tohoku earthquake on R&E network in
Japan,” in Proc. ACM CoNEXT WoID, 2011, p. 6.

[40] T. Kurimoto et al., “SINET5: A low-latency and high-bandwidth back-
bone network for SDN/NFV era,” in Proc. IEEE ICC, 2017, pp. 1–7.

Satoru Kobayashi received the M.S. degree
in information science and technology from the
University of Tokyo, Tokyo, Japan, in 2015.
He is currently pursuing the Ph.D. degree with
the Graduate School of Information Science and
Technology, University of Tokyo. His research
interests are network management and data mining.

KOBAYASHI et al.: MINING CAUSALITY OF NETWORK EVENTS IN LOG DATA 67

Kazuki Otomo is a currently pursuing the mas-
ter’s degree with the Graduate School of Information
Science and Technology, University of Tokyo. His
research interests include knowledge extraction in
network time series.

Kensuke Fukuda received the Ph.D. degree in
computer science from Keio University, Kanagawa,
Japan, in 1999.

He is an Associate Professor with the National
Institute of Informatics and the Graduate University
for Advanced Studies (SOKENDAI). His research
interests span Internet traffic analysis, anomaly
detection, modeling networks, and QoS over the
Internet.

Hiroshi Esaki received the Ph.D. degree in elec-
tronic engineering from the University of Tokyo,
Tokyo, Japan, in 1998.

He is a Professor with the Graduate School of
Information Science and Technology, University of
Tokyo. He is currently the Vice President of JPNIC,
the Director of the WIDE Project, and the Board of
Trustees of the Internet Society.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZapfChancery-MediumItalic
 /ZapfDingBats
 /ZapfDingbatsITCbyBT-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

